Technical Evaluation Report
TER 1306-02
Ox ISO RED CI, ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD & ISO RED MAX HD Foam Plastic Insulating Sheathing

Ox Engineered Products, LLC

Products:
ISO RED Polyiso Foam Insulated Sheathing Products

Issue Date:
June 24, 2013
Revision Date:
August 29, 2019
Subject to Renewal:
August 1, 2020
COMPANY INFORMATION:

Ox Engineered Products, LLC
1255 N 5th St
Charleston, IL 61920
269-435-2425
oxengineeredproducts.com

DIVISION: 07 00 00 - THERMAL AND MOISTURE PROTECTION
SECTION: 07 20 00 - Thermal Protection
SECTION: 07 21 00 - Thermal Insulation
SECTION: 07 22 00 - Roof and Deck Insulation
SECTION: 07 25 00 - Water-Resistive Barriers/Weather Barriers
SECTION: 07 27 00 - Air Barriers

1 PRODUCTS EVALUATED

1.1 ISO RED Polyiso Foam Insulated Sheathing Products
 1.1.1 ISO RED CI Polyiso Foam Insulated Sheathing
 1.1.2 ISO RED MAX Polyiso Foam Insulated Sheathing
 1.1.3 ISO RED MAX WF Polyiso Foam Insulated Sheathing
 1.1.4 ISO RED MAX LD Polyiso Foam Insulated Sheathing
 1.1.5 ISO RED MAX HD Polyiso Foam Insulated Sheathing

2 APPLICABLE CODES AND STANDARDS

2.1 Codes
 2.1.1 IBC—12, 15, 18: International Building Code®
 2.1.2 IRC—12, 15, 18: International Residential Code®

1 Building codes require data from valid research reports be obtained from approved sources. An approved agency, which is an approved source, is defined as “an established and recognized agency that is regularly engaged in furnishing product certification where such agency has been approved...” Being approved, defined as “acceptable to the building official,” is accomplished via accreditation using ISO/IEC 17065 evaluation procedures meeting code requirements of independence, adequate equipment, and experienced personnel. DrJ is an ISO/IEC 17065 ANSI-Accredited Product Certification Body – Accreditation #1131.

Through ANSI accreditation, DrJ certification can be used to obtain product approval in any country that is an IAF MLA Signatory and covered by an IAF MLA Evaluation per the Purpose of the MLA – “certified once, accepted everywhere.” Manufacturers can go to jurisdictions in any IAF MLA Signatory Country and have their products readily approved by authorities having jurisdiction using DrJ’s ANSI accreditation.

For more information on any of these topics or our mission, product evaluation policies, product approval process, and engineering law, see drjcertification.org.

2 Unless otherwise noted, all references in this TER are from the 2018 version of the codes and the standards referenced therein (e.g., ASCE 7, NDS, ASTM). This material, design, or method of construction also complies with the 2000-2015 versions of the referenced codes and the standards referenced therein. As required by code, where this TER is not approved, the building official shall respond in writing stating the reasons this TER was not approved. For any variations in state and local codes, see Section 0.

3 All terms defined in the applicable building codes are italicized.
2.2 Standards and Referenced Documents

2.2.1 ASTM C1289: Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board
2.2.2 ASTM C203: Standard Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
2.2.3 ASTM C209: Standard Test Methods for Cellulosic Fiber Insulating Board
2.2.5 ASTM D2126: Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
2.2.6 ASTM E119: Standard Test Methods for Fire Tests of Building Construction and Materials
2.2.8 ASTM E2178: Standard Test Method for Air Permeance of Building Materials
2.2.9 ASTM E330: Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference
2.2.10 ASTM E331: Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain
2.2.11 ASTM E84: Standard Test Method for Surface Burning Characteristics of Building Materials
2.2.12 NFPA 259: Standard Test Method for Potential Heat of Building Materials
2.2.14 NFPA 286: Standard Methods of Fire Test for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth
2.2.15 SBCA ANSI/FS 100: Standard Requirements for Wind Pressure Resistance of Foam Plastic Insulating Sheathing Used in Exterior Wall Covering Assemblies

3 PERFORMANCE EVALUATION

3.1 ISO RED CI has been evaluated to determine:

3.1.1 Wind pressure resistance performance for use as part of an exterior wall covering assembly in accordance with IBC Section 1403.8, IRC Section R703.3, and ANSI/FSI100.
3.1.2 Performance in accordance with the foam plastic requirements of IBC Section 2603 and IRC Section R316.
3.1.3 Performance for use as continuous insulating sheathing in accordance with IRC Section N1102 and IECC Section C402.
3.1.4 Performance for use as a water-resistive barrier (WRB) in accordance with IBC Section 1403.2 and IRC Section R703.2.
3.1.5 Performance for use as a vapor retarder in accordance with IBC Section 202 and IRC Section R202 and R702.7.
3.1.6 Performance for use as an air barrier in accordance with IECC Section C402.
3.1.7 Performance of ISO RED CI for vertical and lateral fire propagation is outside the scope of this TER.

4 2015 IBC Section 1404.8
5 2015 IBC Section 1404.2
6 2015 IBC Section 1405.3
3.2 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD have been evaluated to determine:

3.2.1 Performance in accordance with the foam plastic requirements of IBC Section 2603 and IRC Section R316.
3.2.2 Performance for use as continuous insulating sheathing in accordance with IRC Section N1102 and IECC Section C402.
3.2.3 Performance for use as a vapor retarder in accordance with IBC Section 202 and 1404.37 and IRC Section R202 and R702.7.
3.2.4 Performance for use as an air barrier in accordance with IECC Section C402.
3.2.5 Performance for use without a thermal barrier in accordance with NFPA 286 and the acceptance criteria of IBC Section 803.1.1.
3.2.6 Performance for vertical and lateral fire propagation in accordance with NFPA 285 and IBC Section 2603.5.5.
3.2.7 Performance of ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD for wind pressure resistance and for use as a WRB is outside the scope of this TER.

3.3 When used as over-sheathing on light-frame, masonry, or concrete exterior walls, ISO RED is not required to meet the wind pressure resistance requirements of this TER.

3.4 This TER does not address wind pressure resistance requirements for ISO RED CI used as part of an Exterior Insulation Finish System (EIFS). Refer to the EIFS manufacturer’s installation instructions for building code compliance.

3.5 These products shall comply with the material standards listed in Section 4 and shall be applied to exterior wall construction in accordance with the general requirements of Section 6. ISO RED CI shall also comply with the prescriptive wind pressure resistance requirements of Section 5.2.

3.6 ISO RED CI used in accordance with this TER that is required to resist wind pressure in exterior wall covering assemblies shall also comply with the product marking requirements of Section 10, and the conditions of use listed in Section 9.

3.7 Any code compliance issues not specifically addressed in this section are outside the scope of this TER.

3.8 Any engineering evaluation conducted for this TER was performed on the dates provided in this TER and within DrJ’s professional scope of work.

4 PRODUCT DESCRIPTION AND MATERIALS

4.1 ISO RED CI

4.1.1 ISO RED CI is a Type I, Class 1 Dual Faced Rigid Cellular Polyisocyanurate Insulation Board product as defined in ASTM C1289.

4.1.2 ISO RED CI consists of a proprietary polyisocyanurate rigid board with facers on both sides. The facers are designed with a base foil layer combined with layers of other material(s).

4.2 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, ISO RED MAX HD

4.2.1 These products are Type I, Class 2 Dual Faced Rigid Cellular Polyisocyanurate Insulation Board products as defined in ASTM C1289.

7 2015 IBC Section 1405.3
8 2015 IBC Section 803.1.2
9 As used in this TER, over-sheathing refers to the application of foam sheathing over and directly on the surface of wall sheathing material or solid wall construction, such as masonry or concrete, whereby the substrate is capable of resisting the full design transverse wind load required by the applicable building code or latest edition of the ASCE 7 standard. In addition, cladding is separately installed over foam sheathing in accordance with Section 5.2. An over-sheathing application of foam sheathing does not require that the foam sheathing resist wind pressure in accordance with this TER.
4.2.2 These products consist of a proprietary polyisocyanurate rigid board with facers on both sides. The facers are designed with a base foil layer. Facer material thicknesses vary by product. (Figure 1 and Figure 2)

4.3 Material Availability

4.3.1 Thickness:
4.3.1.1 ISO RED CI –range from 0.5" (12.7 mm) up to 2.0" (50.8 mm)
4.3.1.2 ISO RED MAX (including WF, LD, and HD) – up to 4.0" (102 mm)
4.3.2 Standard product width: 48" (1219 mm)
4.3.3 Standard lengths: 96", 108", and 120" (2438 mm, 2743 mm, and 3048 mm)

5 Applications

5.1 General
5.1.1 ISO RED CI is foam plastic insulating sheathing (FPIS) used as wall sheathing in accordance with *IBC Section 2603* and *IRC Section R316* for Type V construction.
5.1.2 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are foam plastic insulating sheathing (FPIS) used as wall sheathing in accordance with *IBC Section 2603* for Types I, II, III, IV, and V construction.
5.1.3 Except as provided for in Section 5.6, ISO RED CI must be used with full protection from the interior of the building by an approved thermal barrier in accordance with *IBC Section 2603.4* and *IRC Section R316.4*.
5.1.4 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are approved for use without the protection of a thermal barrier in accordance with *IBC Section 2603.10* and *IRC Section R316.6*, when applied to walls or ceilings.
5.1.5 Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience, and technical judgment.

5.2 Transverse Loads

5.2.1 ISO RED CI may be used to resist wind loads transverse to the face of the wall, as shown in Table 1.
5.2.2 Required component and cladding loads to be resisted are found in *IBC* Section 1609.1.1 and *IRC* Table R301.2(2) and R301.2(3).

5.2.3 As stated in Section 3.2.7, performance of ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD for wind pressure resistance is outside the scope of this TER.

TABLE 1. SUMMARY OF TRANSVERSE WIND LOAD RESISTANCE OF ISO RED CI

<table>
<thead>
<tr>
<th>ISO RED CI Nominal Thickness (in)</th>
<th>Maximum Allowable Design Value (psf)</th>
<th>Maximum Allowable Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative (-)</td>
<td>Positive (+)</td>
</tr>
<tr>
<td>1</td>
<td>40.1</td>
<td>38.1</td>
</tr>
</tbody>
</table>

SI: 1 in = 25.4 mm, 1 psf = 0.0479 kN/m², 1 mph = 1.61 km/h

1. Allowable wind speeds are based on the following: components and cladding loads, Exposure B, wall zone 5 (corner), 10 sq. ft.
2. Any required adjustments to these loads for other site conditions shall be in accordance with the applicable building code.
3. Allowable design wind pressures are determined in accordance with SBCA ANSI/FS100 with studs spaced a maximum of 16” o.c.

5.3 **Thermal Resistance**

5.3.1 ISO RED CI, ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are FPIS panels used as thermal insulation in wall, roof, and ceiling assemblies.

5.3.2 These products meet the continuous insulating sheathing requirements complying with the provisions of *IRC* Section N1102 and *IECC* Section C402.

5.3.3 These products have the thermal properties shown in Table 2.

TABLE 2. THERMAL RESISTANCES OF ISO RED POLYISO FOAM INSULATED SHEATHING PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Thickness (in)</th>
<th>R-Value¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO RED CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

SI: 1 in = 25.4 mm

1. Thermal values are determined using the ASTM C518 test method at 75°F mean temperature on material conditioned according to ASTM C1289 Section 11.1 (F°ft²hr/Btu)
5.4 **Air Barrier**

5.4.1 Wall and ceiling assemblies constructed with ISO RED CI, ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are used to meet air barrier requirements in accordance with *IECC Section C402.*

5.4.2 All penetrations shall be flashed and sealed in accordance with the flashing manufacturer’s installation instructions. Self-adhered flashing tape shall meet *AAMA 711* (FortiFlash Butyl or equivalent).

5.4.3 These products are defined as air barrier materials having an air permeance of less than 0.02 L/m²*ft², in accordance with *IECC Section C402.5.*

5.5 **Water Resistive Barrier**

5.5.1 ISO RED CI, ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are approved WRBs in accordance with *IBC Section 1403.2* and *IRC Section R703.2* when installed with 2½"-wide 3M (8087), White 3M Venture 1558 HT, Venture 1520 CW Aluminum Foil Sheathing Tape, or equivalent on all sheathing seams. Four inch (4") wide self-adhered flashing tape meeting *AAMA 711* (FortiFlash Butyl or equivalent) with release liner may be required for effective taping of inside and outside corners. See the manufacturer’s product information for further details.

5.5.2 ISO RED CI shall be installed with board joints placed directly over exterior framing spaced a maximum of 24" (610 mm) o.c. The fasteners used to attach the board shall be installed in accordance with Section 6.

5.5.3 A separate WRB may also be provided. If a separate WRB method is used, taping of the sheathing joints is not required.

5.5.4 Flashing of penetrations shall comply with the applicable code and must be installed at all sheathing penetrations. Use qualified flashing material such as self-adhered flashing tape meeting *AAMA 711* (3M All Weather Flashing Tape 8067 or equivalent). See Figure 3, Figure 4, and Figure 5 for typical penetration flashing details.

5.5.5 Flashing Details – Typical Flanged (Figure 3. Typical Penetration Flashing Detail – Flanged) and Unflanged (Figure 4) Penetration and Flanged Window (Figure 5).
STEP 1

STEP 2

STEP 3

FIGURE 3. TYPICAL PENETRATION FLASHING DETAIL – FLANGED

FIGURE 4. TYPICAL PENETRATION FLASHING DETAIL – UNFLANGED
5.6 Fire Safety Performance

5.6.1 Surface Burn Characteristics:

5.6.1.1 ISO RED CI, ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD have the flame spread and smoke developed ratings as shown in Table 3 when tested in accordance with ASTM E84 per IBC Section 2603.3 and IRC Section R316.3.

Table 3. Fire Performance of ISO RED CI, ISO RED MAX, ISO RED MAX WF, and ISO RED MAX LD

<table>
<thead>
<tr>
<th>Product</th>
<th>Flame Spread</th>
<th>Smoke Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO RED CI</td>
<td>< 75</td>
<td>< 450</td>
</tr>
<tr>
<td>ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD</td>
<td>< 25</td>
<td>< 450</td>
</tr>
</tbody>
</table>

1. Tested in accordance with ASTM E84, with maximum foam thickness of 2".
2. Tested in accordance with ASTM E84, with maximum foam thickness of 4".

5.6.2 Vertical and Lateral Fire Propagation:

5.6.2.1 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD were tested to assess performance with regard to vertical and lateral fire propagation in accordance with NFPA 285 and IBC Section 2603.5.5.

5.6.2.2 Engineering analysis has also been conducted to assess substitution of other products within the approved wall assemblies.

5.6.2.3 The wall assemblies listed in Table 4 and Table 5 are approved for use in buildings of Type I-IV construction.

Table 4. Approved NFPA 285 Wall Assemblies – Brick Cladding

<table>
<thead>
<tr>
<th>Wall Component</th>
<th>Materials</th>
</tr>
</thead>
</table>
| Base Wall System | 1. Cast Concrete Wall
| Use either 1, 2, 3 or 4 | 2. Concrete Masonry Wall
| Note: May use 4 optionally | 3. 20-gauge (min.) 3/8" (min.) steel studs spaced 24" o.c. (max)
| when FRTW framing is allowed by code. | a. 1 layer – 5/8"-thick Type X gypsum wallboard on interior
| | b. Lateral bracing every 4'
| | 4. Where allowed in Types I-IV construction, FRTW (Fire Retardant Treated Wood) studs complying with IBC Section 2303.2, minimum nominal 2x4 spaced at a maximum 16" o.c.
| | a. 5/6" (min.) Type X gypsum wallboard interior.
<p>| | b. Wall braced at mid-height and fire-stopped at top and bottom. |</p>
<table>
<thead>
<tr>
<th>Wall Component</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire-Stopping in Stud Cavities at Floor Lines. Use 2 with FRTW framing.</td>
<td>1. Any approved 4 pcf mineral fiber based safing insulation in each stud cavity at floor line. Safing thickness must match stud cavity depth. 2. Solid FRTW fire blocking at floor line when Base Wall System, Item 4 is used.</td>
</tr>
<tr>
<td>Cavity Insulation Use any option 1-13</td>
<td>1. None 2. 1½" (min.) BASF Wallite™ 2 pcf SPF (or equivalent) up to full cavity fill. 3. 1½" (min.) Premium Spray Products Foamsulate 20 up to full cavity fill. 4. Any noncombustible insulation per ASTM E136. 5. Any mineral fiber (Batt or board type Class A ASTM E84 faced or unfaced). 6. Any fiberglass (Batt type Class A ASTM E84 faced or unfaced). 7. Icynene Classic, Classic Plus, Classic Ultra or Classic Ultra Select; MD-R-210; MD-C-200; or Proseal. Partial cavity fill with a max. air space of 2" or full cavity fill not exceeding 7½". Use with ½" exterior gypsum sheathing (min.). 8. NCPI Polyurethanes, full cavity depth or less of InsulBloc, InsulStar, InsulStar Plus or ThermalStop™ closed cell (2.0 lb/ft³) spray polyurethane foam applied using sheathing as substrate and covering the width of the cavity. Use with ½" exterior gypsum sheathing (min.). 9. SWD Urethane Quik-Shield 112 spray polyurethane foam applied using 5/8" Type X sheathing as substrate. Air gap must not exceed 2½". 10. Demilec Sealection 500 or HeatLoc Soy 200, up to full cavity fill. Use with 5/8" Type X exterior gypsum sheathing. 11. Accella Polyurethane Bayseal® OC and OCX or Bayseal® CC, up to full cavity fill using minimum ½" exterior gypsum sheathing. 12. Lapolla™ Foam-Lok™ FL 2000 with 5/8" Type X exterior sheathing in 3½" studs (max.) 13. Any cavity insulation which has been tested per ASTM E1354 (at a min. of 20 kw/m² heat flux) and shown by analysis to be of equivalent or lesser flammability (based on Tign, Pk. HRR) than the foam tested in Item 2 or 3 above.</td>
</tr>
<tr>
<td>Exterior Sheathing Use either 1, 2 or 3 (with limitations noted in Cavity Insulation Allowances)</td>
<td>1. None 2. Minimum ½" exterior gypsum sheathing (unless 5/8" Type X exterior sheathing is otherwise specified with cavity insulations). 3. ½" (min.) FRTW structural panels complying with IBC Section 2303.2 and installed in accordance with the code requirements for Types I-IV construction.</td>
</tr>
</tbody>
</table>

Note: Exterior FRTW sheathing or gypsum wallboard is optional for Base Walls 1 and 2.
Wall Component

<table>
<thead>
<tr>
<th>Water-Resistive Barrier Over Base Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use either 1, 2, or 3</td>
</tr>
<tr>
<td>Note: Item 3 applies when exterior gypsum sheathing is used.</td>
</tr>
</tbody>
</table>

Materials

1. None
2. WRB's over Steel Framing:
 a. Kingspan GreenGuard® Max Building Wrap
 b. Dupont Tyvek (Various per ESR 2375)
 c. Dow Weathermate™
 d. Dow Weathermate™ Plus
 e. Ox ThermoPly
3. WRBs over exterior sheathing:
 a. Henry Air Bloc 32MR
 b. Henry Foilskin
 c. Henry MetalClad
 d. CCW 705 FR-A
 e. Kingspan GreenGuard® Max Building Wrap
 f. Dupont Tyvek (various per ESR-2375)
 g. Dow Weathermate™
 h. Dow Weathermate™ Plus
 i. Any WRB that has been tested per ASTM E1354 (at a min. of 20 kw/m² heat flux) and shown by analysis to be of equivalent or lesser flammability (based on Tₜᵢgn, Pk. HRR) than the exterior insulation foam core or baseline Item 3a above.

Exterior Insulation

Up to 4”-thick OX ISO RED MAX, consisting of a single panel or multiple thinner panels

WRB Over Exterior Insulation

Use either 1 or 2

1. Aluminum construction tape as tested (or equivalent), max. 6” wide over staggered insulation joints.
2. For use with all Exterior Cladding options as written below:
 a. Henry Foilskin
 b. Henry MetalClad
 c. CCW 705 FR-A
 d. Kingspan GreenGuard® Max Building Wrap
 e. Dupont Tyvek (various per ESR-2375)
 f. Dow Weathermate™
 g. Dow Weathermate™ Plus
 h. Any WRB which has been tester per ASTM E1354 (at a min. of 20 kw/m² heat flux) and shown by analysis to be of equivalent or lesser flammability (based on Tₜᵢgn, Pk. HRR) than those listed above.

Exterior Cladding

Use 1 through 6

1. Brick – Nominal 4” clay brick or veneer with max. 2” air gap behind the brick. Brick ties/anchors 24” o.c. (max.).
2. Stucco – Minimum ¾”-thick exterior cement plaster and lath with approved WRB over insulation.
3. Limestone – Minimum 2” thick, using any standard non-open joint installation technique such as shiplap.
5. Terracotta Cladding – Minimum 1½” thick (solid or equivalent by weight) using any standard non-open joint installation technique such as shiplap.
6. Cast Artificial Stone – Minimum 1½” thick complying with ICC-ES AC51 installed using any standard non-joint installation technique such as shiplap.

1. The assemblies' combinations created herein and the various substitutions of products are based on testing and professional thermal engineering analysis by Priest & Associates Consulting, LLC.
2. Acceptance criteria for ASTM E1354 testing have not been well established in the referenced building codes and foam sheathing related sections. The criteria stated here for substitution of products is based on testing and professional thermal engineering analysis by Priest & Associates.
3. Tₜᵢgn is the time to ignition from the start of the test until the sheathing ignites. Pk. HRR is the peak heat release rate during the test.
Table 5. Approved NFPA 285 Wall Assemblies - ACM Cladding

<table>
<thead>
<tr>
<th>Wall Component</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Wall System
Use either 1, 2, 3 or 4
Note: May use 4 optionally when FRTW framing is allowed by code</td>
<td>1. Cast Concrete Wall 2. Concrete Masonry Wall 3. 20-gauge (min.) $\frac{3}{8}''$ (min.) steel studs spaced 24" o.c. (max) a. 1 layer – $\frac{5}{8}''$-thick Type X gypsum wallboard on interior b. Lateral bracing every 4' 4. Where allowed in Types I-IV construction, FRTW (Fire Retardant Treated Wood) studs complying with IBC Section 2303.2, minimum nominal 2x4 spaced at a maximum 16" o.c. a. $\frac{5}{8}''$ (min.) Type X gypsum wallboard interior. b. Wall braced at mid-height and fire-stopped at top and bottom</td>
</tr>
<tr>
<td>Fire-Stopping in Stud Cavities at Floor Lines
Use 2 with FRTW framing. Use either 1 or 2. As an option, use 2 with FRTW framing</td>
<td>1. Any approved 4 pcf mineral fiber based safing insulation in each stud cavity at floor line. Safing thickness must match stud cavity depth. 2. Solid FRTW fire blocking at floor line when Base Wall System, Item 4 is used.</td>
</tr>
<tr>
<td>Cavity Insulation
Use any option 1-13</td>
<td>1. None 2. $1\frac{1}{2}''$ (min.) BASF Wallite™ 2 pcf SPF (or equivalent) up to full cavity fill. 3. $1\frac{1}{2}''$ (min.) Premium Spray Products Foamsulate 20 up to full cavity fill. 4. Any noncombustible insulation per ASTM E136. 5. Any mineral fiber (Batt or board type Class A ASTM E84 faced or unfaced). 6. Any fiberglass (Batt type Class A ASTM E84 faced or unfaced). 7. Icynene Classic, Classic Plus, Classic Ultra or Classic Ultra Select; MD-R-210; MD-C-200; or Proseal. Partial cavity fill with a max. air space of 2" or full cavity fill not exceeding $7\frac{7}{8}''$. Use with $\frac{1}{2}''$ exterior gypsum sheathing (min.). 8. NCFI Polyurethanes, full cavity depth or less of InsulBloc, InsulStar, InsulStar Plus or ThermalStop™ closed cell (2.0 lb/ft³) spray polyurethane foam applied using sheathing as substrate and covering the width of the cavity. Use with $\frac{1}{2}''$ exterior gypsum sheathing (min.). 9. SWD Urethane Quik-Shield 112 spray polyurethane foam applied using $\frac{3}{8}''$ Type X sheathing as substrate. Air gap must not exceed 2½''. 10. Demilec Sealection 500 or HeatLok Soy 200, up to full cavity fill. Use with $\frac{3}{8}''$ Type X exterior gypsum sheathing. 11. Accella Polyurethane Bayseal® OC and OCX or Bayseal® CC, up to full cavity fill using minimum $\frac{1}{2}''$ exterior gypsum sheathing. 12. Lapolla™ Foam-Lok™ FL 2000 with $\frac{3}{8}''$ Type X exterior sheathing in $\frac{3}{8}''$ studs (max.) 13. Any cavity insulation which has been tested per ASTM E1354 (at a min. of 20 kw/m² heat flux) and shown by analysis to be of equivalent or lesser flammability (based on T_{ign}, Pk. HRR) than the foam tested in Item 2 or 3 above.</td>
</tr>
<tr>
<td>Exterior Sheathing
Use either 1, 2 or 3
Note: Exterior FRTW sheathing or gypsum wallboard is optional for Base Walls 1 and 2.</td>
<td>1. Minimum $\frac{1}{2}''$ exterior gypsum sheathing ($\frac{3}{8}''$ Type X exterior gypsum sheathing required when SPF in cavity). 2. $\frac{1}{2}''$ (min.) FRTW structural panels complying with IBC section 2303.2 and installed in accordance with the code requirements for Types I-IV construction.</td>
</tr>
<tr>
<td>Wall Component</td>
<td>Materials</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Water-Resistant Barrier Over Base Wall</td>
<td>Use any item 1-8</td>
</tr>
<tr>
<td></td>
<td>1. None</td>
</tr>
<tr>
<td></td>
<td>2. Any WRB that has been tested per ASTM E1354 (at a min. of 20 kw/m²) and shown by analysis to be of equivalent or lesser flammability (based on T<sub>ign</sub>, Pk. HRR) than the exterior insulation foam core or baseline Item 3 below.</td>
</tr>
<tr>
<td></td>
<td>3. Henry Air Bloc 32MR</td>
</tr>
<tr>
<td></td>
<td>4. Kingspan GreenGuard® Max Building Wrap</td>
</tr>
<tr>
<td></td>
<td>5. Dupont Tyvek (Various per ESR-2375)</td>
</tr>
<tr>
<td></td>
<td>6. Dow Weathermate™</td>
</tr>
<tr>
<td></td>
<td>7. Dow Weathermate™ Plus</td>
</tr>
<tr>
<td></td>
<td>8. WRBs over exterior sheathing:</td>
</tr>
<tr>
<td></td>
<td>a. Henry Foilskin</td>
</tr>
<tr>
<td></td>
<td>b. Henry MetalClad</td>
</tr>
<tr>
<td></td>
<td>c. CCW 705 FR-A</td>
</tr>
<tr>
<td></td>
<td>d. Kingspan GreenGuard® Max Building Wrap</td>
</tr>
<tr>
<td></td>
<td>e. Dupont Tyvek (various per ESR-2375)</td>
</tr>
<tr>
<td></td>
<td>f. Dow Weathermate™</td>
</tr>
<tr>
<td></td>
<td>g. Dow Weathermate™ Plus</td>
</tr>
<tr>
<td>Exterior Insulation</td>
<td>Up to 4”-thick OX ISO RED MAX, consisting of a single panel or multiple thinner panels</td>
</tr>
<tr>
<td>WRB Over Exterior Insulation</td>
<td>Use any item 1-5</td>
</tr>
<tr>
<td></td>
<td>1. None</td>
</tr>
<tr>
<td></td>
<td>2. Aluminum construction tape as tested (or equivalent), max. 6” wide over staggered insulation joints.</td>
</tr>
<tr>
<td></td>
<td>3. Henry Foilskin</td>
</tr>
<tr>
<td></td>
<td>4. Henry MetalClad</td>
</tr>
<tr>
<td></td>
<td>5. CCW 705 FR-A</td>
</tr>
<tr>
<td>Exterior Cladding</td>
<td>Use any item 1-11</td>
</tr>
<tr>
<td></td>
<td>1. Brick – Nominal 4” clay brick or veneer with max. 2” air gap behind the brick. Brick ties/anchors 24” o.c. (max.).</td>
</tr>
<tr>
<td></td>
<td>2. Stucco – Minimum ½”-thick exterior cement plaster and lath with an optional secondary water resistant barrier between the exterior insulation and lath. The secondary barrier shall not be full coverage asphalt or self-adhered butyl membrane.</td>
</tr>
<tr>
<td></td>
<td>3. Limestone – Minimum 2” thick, using any standard installation technique.</td>
</tr>
<tr>
<td></td>
<td>4. Natural Stone Veneer – Minimum 2” thick using any standard installation technique.</td>
</tr>
<tr>
<td></td>
<td>6. Terracotta Cladding – Minimum 1¼” thick, using any standard installation technique.</td>
</tr>
<tr>
<td></td>
<td>7. Any MCM, ACM (aluminum, steel, copper, zinc) (w/ 1½” ± ½” air gap) that has successfully passed NFPA 285 using any standard installation technique.</td>
</tr>
<tr>
<td></td>
<td>8. Uninsulated sheet metal building panels including aluminum, steel or copper using any standard installation technique.</td>
</tr>
<tr>
<td></td>
<td>10. Stone/Aluminum honeycomb composite building panels that have passed NFPA 285 or equivalent (StoneLite Wall Panels by Stone Panels – ESR-1500)</td>
</tr>
<tr>
<td></td>
<td>11. Autoclaved-aerated-concrete (AAC) panels that have successfully passed NFPA 285 using any standard installation technique.</td>
</tr>
</tbody>
</table>

SI: 1 in = 25.4 mm, 1 lb = 4.45 N, 1 lb/ft = 0.0146 kN/m, 1 psf = 0.0479 kN/m², 1 psi = 0.00689 MPa, 1 mph = 1.61 km/h

1. The assemblies' combinations created herein and the various substitutions of products are based on testing and professional thermal engineering analysis by Priest & Associates Consulting, LLC.
2. Acceptance criteria for ASTM E1354 testing have not been well established in the referenced building codes and foam sheathing related sections. The criteria stated here for substitution of products is based on testing and professional thermal engineering analysis by Priest & Associates.
3. T_{ign} is the time to ignition from the start of the test until the sheathing ignites. Pk. HRR is the peak heat release rate during the test.
5.6.3 **Thermal Barrier:**

5.6.3.1 ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD boards with a maximum thickness of 4" were tested in accordance with NFPA 286 and have met the acceptance criteria of IBC Section 803.1.1.1\(^\text{12}\) for use on walls or ceilings without a thermal barrier, in accordance with IBC Section 2603.4 and 2603.5.2.

5.6.3.2 ISO RED CI shall be fully protected from the interior of the building by an approved 15-minute thermal barrier or ignition barrier as required by IBC Section 2603.4 and IRC Section R316.4, except as follows:

5.6.3.2.1 When installed in an attic, crawlspace, or other uninhabitable space, ISO RED CI, at a maximum thickness of 2", is approved for use without a thermal barrier or ignition barrier. This includes, but is not limited to, knee and gable end walls.

5.6.3.2.2 Use without an approved thermal barrier or ignition barrier is limited to areas where:

5.6.3.2.2.1 ISO RED CI is installed on the walls only.

5.6.3.2.2.2 Access to the space is required by IRC Section R807.1 or R408.4.

5.6.3.2.2.3 Entry is made only for the purposes of repairs or maintenance.

6 INSTALLATION

6.1 Installation shall comply with the manufacturer’s installation instructions and this TER. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

6.1.1 See The Foam Sheathing Committee (FCS) Best Practices guide for further details.

6.2 **Installation Procedure**

6.2.1 These products may be cut to size with a utility knife, hand saw, or power saw.

6.2.2 Attachment information is provided in Table 6.

<table>
<thead>
<tr>
<th>Application</th>
<th>Stud Spacing</th>
<th>Attachment Method</th>
<th>Fastener Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Framing</td>
<td>16" or 24"</td>
<td>Capped nails, capped staples, or roofing nails (~1" framing embedment)</td>
<td>12" perimeter 12" field</td>
</tr>
<tr>
<td>Metal Framing</td>
<td>16" or 24"</td>
<td>Corrosion-resistant self-tapping screws with 1" diameter cap or washer (~1" framing embedment)</td>
<td>12" perimeter 12" field</td>
</tr>
<tr>
<td>Interior Masonry or Concrete</td>
<td>N/A</td>
<td>Suitable construction adhesive or masonry fastener with 1" diameter cap or washer or combination of adhesive & mechanical fasteners (~1" embedment into substrate)</td>
<td>Adhesive beads spaced 16" horizontally & full perimeter Mechanical fasteners 12" perimeter and 12" field spaced 16" horizontally</td>
</tr>
<tr>
<td>Exterior Masonry or Concrete Below Grade</td>
<td>N/A</td>
<td>Granular water-draining fill</td>
<td>Only as required to ensure intimate contact to masonry surface or water proofed surface</td>
</tr>
</tbody>
</table>

St: 1 in = 25.4 mm

1. Butt panels tightly and seal all joints where intrusion of bulk moisture or moisture vapor is undesirable with sealant and/or approved tape.
2. Panels used to resist transverse wind pressure or used as a WRB shall be installed on studs spaced a maximum of 16" o.c and all panel edges shall be located on framing or blocking.
3. For required attachments in fire rated construction, consult the manufacturer's approved fire rated assembly details and refer to Table 4.

\(^\text{12}\) 2015 IBC Section 803.1.2.1
6.2.3 Windows and doors shall be installed in accordance with the manufacturer’s installation instructions.

6.2.4 Windows, door openings, and other penetrations shall be flashed in accordance with IBC Section 1404.4 and IRC Section R703.4.

6.2.5 Follow the manufacturer’s instructions for installation of claddings and rain screens over these products.

7 TEST ENGINEERING SUBSTANTIATING DATA

7.1 Evaluation and analysis of testing, data, and reporting of thermal properties in accordance with ASTM C518 performed by LaserComp.

7.2 Evaluation and analysis of testing, data, and reporting of material properties in accordance with ASTM C1289 by Architectural Testing, Inc., an Intertek company.

7.3 Evaluation and analysis of testing, data, and reporting of surface burning characteristics performed in accordance with ASTM E84, conducted by Architectural Testing, Inc., an Intertek company, and Commercial Testing Inc.

7.4 Evaluation and analysis of testing, data, and reporting of fire resistance testing performed in accordance with ASTM E119, conducted by Architectural Testing, Inc., an Intertek company.

7.5 Evaluation and analysis of testing, data, and reporting of transverse wind pressure performed in accordance with ASTM E330, conducted by SBCRI.

7.6 Evaluation and analysis testing, data, and reporting of water penetration performed in accordance with ASTM E331, conducted by NTA, Inc.

7.7 Evaluation and analysis of testing, data, and reporting of air permeance in accordance with ASTM E2178, conducted by Architectural Testing, Inc., an Intertek company.

7.8 Test reports and data for determining use in attics and crawlspaces without a thermal barrier or ignition barrier in accordance with NFPA 286, conducted by Intertek.

7.9 Test reports and engineering analysis of vertical and lateral fire propagation properties in accordance with NFPA 285, conducted by Intertek.

7.10 ISO RED CI Quality Control Manual in accordance with a third-party quality control program with inspections conducted by an approved agency.

7.11 Engineering analysis on NFPA 285 testing performed by Priest & Associates Consulting, LLC.

7.12 Some information contained herein is the result of testing and/or data analysis by other sources which conform to IBC Section 1703 and relevant professional engineering law. DrJ relies on accurate data from these sources to perform engineering analysis. DrJ has reviewed and found the data provided by other professional sources to be credible.

7.13 Where appropriate, DrJ’s analysis is based on design values that have been codified into law through codes and standards (e.g., IBC, IRC, NDS®, and SDPWS). This includes review of code provisions and any related test data that aids in comparative analysis or provides support for equivalency to an intended end-use application. Where the accuracy of design values provided herein is reliant upon the published properties of commodity materials (e.g., lumber, steel, and concrete), DrJ relies upon the grade mark, stamp, and/or design values provided by raw material suppliers to be accurate and conforming to the mechanical properties defined in the relevant material standard.

13 2015 IBC Section 1405.4
8 FINDINGS

8.1 When used and installed in accordance with this TER and the manufacturer’s installation instructions, the ISO RED CI product is approved for the following:

8.1.1 Wind pressure resistance performance for use as part of an exterior wall covering assembly in accordance with IBC Section 1403.8,14 IRC Section R703.3, and ANSI/FS100.

8.1.2 Performance in accordance with the foam plastic requirements of IBC Section 2603 and IRC Section R316.

8.1.3 Performance for use as continuous insulating sheathing in accordance with IRC Section N1102 and IECC Section C402.

8.1.4 Performance for use as a WRB in accordance with IBC Section 1403.215 and IRC Section R703.2.

8.1.5 Performance for use as a vapor retarder in accordance with IBC Section 202 and 1404.316 and IRC Section R202 and R702.7.

8.1.6 Performance for use as an air barrier in accordance with IECC Section C402.

8.2 When used and installed in accordance with this TER and the manufacturer’s installation instructions, the ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD products are approved for the following:

8.2.1 Performance in accordance with the foam plastic requirements of IBC Section 2603 and IRC Section R316.

8.2.2 Performance for use as continuous insulating sheathing in accordance with IRC Section N1102 and IECC Section C402.

8.2.3 Performance for use as a vapor retarder in accordance with IBC Section 202 and 1404.317 and IRC Section R202 and R702.7.

8.2.4 Performance for use as an air barrier in accordance with IECC Section C402.

8.2.5 Performance for use without a thermal barrier in accordance with NFPA 286 and the acceptance criteria of IBC Section 803.1.1.18

8.3 IBC Section 104.11 (IRC Section R104.11 and IFC Section 104.9 are similar) states:

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code…Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons the alternative was not approved.

8.4 This product has been evaluated in the context of the codes listed in Section 2 and is compliant with all known state and local building codes. Where there are known variations in state or local codes applicable to this evaluation, they are listed here.

8.4.1 No known variations

14 2015 IBC Section 1404.8
15 2015 IBC Section 1404.2
16 2015 IBC Section 1405.3
17 2015 IBC Section 1405.3
18 2015 IBC Section 803.1.2
9 CONDITIONS OF USE

9.1 ISO RED CI shall be fully protected from the interior of the building by an approved 15-minute thermal barrier or ignition barrier where required by the applicable code, except where installed in attics and uninhabited spaces as described in Section 5.6.3.2. ISO RED MAX, ISO RED MAX WF, ISO RED MAX LD, and ISO RED MAX HD are not required to be protected by a thermal barrier when installed in accordance with Section 0.

9.2 These products shall not be used as a structural nailing base for claddings.

9.3 In areas where the probability of termite infestation is very heavy in accordance with IBC Section 2603.9 or IRC Section R318.4, these products must not be placed on exterior walls located within 6” (152 mm) of the ground.

9.4 Walls sheathed with these products must not be used to resist horizontal loads from concrete or masonry walls.

9.5 When using these products, the stud walls shall be braced by other materials in accordance with the applicable code.

9.6 Where required by the building official, also known as the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

9.7 Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the AHJ for review and approval.

9.8 Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed and/or by the Building Designer (e.g., owner or registered design professional).

9.9 At a minimum, this product shall be installed per Section 5.3 of this TER.

9.10 This product is manufactured under a third-party quality control program in accordance with IBC Section 104.4 and 110.4 and IRC Section R104.4 and R109.2.

9.11 The actual design, suitability, and use of this TER, for any particular building, is the responsibility of the owner or the owner's authorized agent. Therefore, the TER shall be reviewed for code compliance by the building official for acceptance.

9.12 The use of this TER is dependent on the manufacturer's in-plant QC, the ISO/IEC 17020 third-party quality assurance program and procedures, proper installation per the manufacturer’s instructions, the building official’s inspection, and any other code requirements that may apply to demonstrate and verify compliance with the applicable building code.

10 IDENTIFICATION

10.1 The product(s) listed in Section 1.1 are identified by a label on the board or packaging material bearing the manufacturer’s name, product name, TER number, and other information to confirm code compliance.

10.2 Additional technical information can be found at oxengineeredproducts.com.

11 REVIEW SCHEDULE

11.1 This TER is subject to periodic review and revision. For the most recent version of this TER, visit drjcertification.org.

11.2 For information on the current status of this TER, contact DrJ Certification.