Technical Evaluation Report

TER 1010-03

Application of the 250-lb. Sprinkler Installer Load

Trussway Industries, LLC

Product:
Application of the 250-lb. Sprinkler Installer Load

Issue Date:
October 22, 2010

Revision Date:
September 5, 2019

Subject to Renewal:
April 1, 2020
Division: 01 00 00 – General Requirements

Section: 01 60 00 – Product Requirements

Division: 15 00 00 – Mechanical

Section: 15 30 00 – Fire Protection Piping

1. Code Compliance Process Evaluated:

1.1. Application of the 250-lb. sprinkler installer load in accordance with NFPA 13, 13R and 13D.

1.2. For the most recent version of this Technical Evaluation Report (TER), visit drjengineering.org. For more detailed state professional engineering and code compliance legal requirements and references, visit drjengineering.org/statelaw. DrJ is fully compliant with all state professional engineering and code compliance laws.

1.3. This TER can be used to obtain product approval in any country that is an IAF MLA Signatory (all countries found here) and covered by an IAF MLA Evaluation per the Purpose of the MLA (as an example, see letter to ANSI from the Standards Council of Canada). Manufacturers can go to jurisdictions in the U.S., Canada and other IAF MLA Signatory Countries and have their products readily approved by authorities having jurisdiction using DrJ’s ANSI accreditation.

1.4. Building code regulations require that evaluation reports are provided by an approved agency meeting specific requirements, such as those found here and covered by an IAF MLA Evaluation per the Purpose of the MLA (as an example, see letter to ANSI from the Standards Council of Canada). Any agency accredited in accordance with ANSI ISO/IEC 17065 meets this requirement within ANSI’s scope of accreditation. For a list of accredited agencies, visit ANSI’s website. For more information, see drjcertification.org.

1.5. Requiring an evaluation report from a specific private company (i.e. ICC-ES, IAPMO, CCMC, DrJ, etc.) can be viewed as discriminatory and is a violation of international, federal, state, provincial and local anti-trust and free trade regulations.

1.6. DrJ’s code compliance work:

1.6.1. Conforms to code language adopted into law by individual states and any relevant consensus based standard such as an ANSI or ASTM standard.

1.6.2. Complies with accepted engineering practice, all professional engineering laws and by providing an engineer’s seal DrJ take professional responsibility for its specified scope of work.

2. Applicable Codes and Standards:

2.2. 2012, 2015 and 2018 International Residential Code (IRC)

2.3. 2018 National Design Specification® for Wood Construction (NDS)

1 Unless otherwise noted, all references in this code compliant technical evaluation report (TER) are from the 2018 version of the codes and the standards referenced therein, including, but not limited to, ASCE 7, SDPWS and WFCM. This product also complies with the 2000-2015 versions of the IBC and IRC and the standards referenced therein. As required by law, where this TER is not approved, the building official shall respond in writing, stating the reasons this TER was not approved. For variations in state and local codes, if any see Section 7.
2.4. ANSI/TPI 1 – National Design Standard for Metal Plate Connected Wood Truss Construction
2.5. NFPA 13 – Installation of Sprinkler Systems
2.6. NFPA 13D – Installation of Sprinkler Systems in One- and Two-family Dwellings
2.7. NFPA 13R – Installation of Sprinkler Systems In Residential Occupancies Up to and Including Four Stories in Height

3. Performance Evaluation:
3.1. The design practice of Trussway's metal plate connected wood trusses has been evaluated for compliance with IBC Section 903.3.1, which requires fire sprinkler systems to be designed and installed in accordance with NFPA 13, 13R or 13D.

3.1.1. For NFPA 13 and 13R systems, this includes loading of trusses to account for the weight of the water-filled pipe as well as 250 lb. of very short duration load, to account for an impact should an installer lose balance and grab a pipe to steady them self.

3.1.2. For NFPA 13D systems, small diameter PVC or PEX piping is common. The dead load of the sprinkler system is generally covered in the normal dead loads applied to the trusses.

3.2. Any code compliance issues not specifically addressed in this section are outside the scope of this TER.

4. Product Description and Materials:
4.1. This report applies to metal plate connected roof and floor trusses designed and manufactured by Trussway Industries, LLC.

5. Applications:
5.1. Structural Application Support Requirements

5.1.1. Installation shall comply with the manufacturer’s installation instructions and this TER. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

5.1.2. Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience and good technical judgment.

5.1.3. IBC Section 903.3.1 specifies that, where required, automatic sprinkler systems shall be designed and installed in accordance with the provisions of NFPA 13, NFPA 13R or NFPA 13D.

5.1.4. NFPA 13 – Standard for the Installation of Sprinkler Systems provides the minimum requirements for the design and installation of automatic fire sprinkler systems and exposure protection sprinkler systems for buildings of all occupancies.

5.1.5. NFPA 13R – Standard for the Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height is intended for a more specific type of building and provides the design and installation criteria of automatic sprinkler systems for protection against fire hazards in Group R occupancies up to and including four stories in height.

5.1.5.1. Examples of buildings typically covered by NFPA 13R include:

5.1.5.1.1. Apartment buildings and condominiums
5.1.5.1.2. Lodging and rooming houses
5.1.5.1.3. Board and care facilities (slow-evacuation type with 16 or fewer occupants and prompt-evacuation type)
5.1.5.1.4. Hotels, motels and dormitories

5.1.6. NFPA 13D – Standard for the Installation of Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes provides the design and installation criteria of automatic sprinkler systems for protection against fire hazards in buildings for which the IRC applies, as well as manufactured homes.
5.2. Sprinkler Systems Installed per NFPA 13 or NFPA 13R

5.2.1. Structural members supporting sprinkler piping designed and installed in accordance with NFPA 13 or NFPA 13R are required to support the weight of the water-filled pipe plus a 250-lb. concentrated load applied at the location of the pipe attachment. Section 9.2.1.3.1 of NFPA 13 states:

9.2.1.3.1 Unless the requirements of 9.2.1.3.3 apply, sprinkler piping shall be substantially supported from the building structure, which must support the added load of the water-filled pipe plus a minimum of 250 lb (114 kg) applied at the point of hanging, except where permitted by 9.2.1.1.2, 9.2.1.3.3, and 9.2.1.4.1.

5.2.1.1. Section 9.2.1.3.3 refers to flexible piping installation.

5.2.1.2. Section 9.2.1.1.2 refers to toggle hangers for the support of 1 1/2" and smaller pipe under ceilings of hollow tile or metal lath and plaster.

5.2.1.3. Section 9.2.1.4.1 refers to branch line hangers attached to metal deck limitation of 1" or smaller pipe.

5.2.2. The 2007 Commentary to Section 9.2.1.3.1 provides the following insight as to the intention of these loading requirements:

Each individual point where the hanger is attached to the structure must be able to support the weight of the water-filled pipe plus 250 lb (114 kg), as stated in 9.2.1.3.1. This requirement does not intend to add 250 lb (114 kg) concurrently for each hanger when determining the minimum strength of the building structure. As mentioned in the commentary to 9.1.1, the 250-lb (114-kg) load represents the assumed weight of a sprinkler pipe fitter with associated work equipment who grasps the pipe during a mishap. It is a temporary point load applied at any hanger.

5.2.3. The Commentary to Section 9.2.1.3.1 of NFPA 13 makes it clear that the 250-lb. concentrated load is intended to represent the weight of a sprinkler installer and is to be applied for a very short time (i.e., just long enough for the pipelifter to regain their balance).

5.2.3.1. This load is considered an installation live load and is not intended to be applied simultaneously at all pipe support locations or concurrently with other live loads such as floor, roof, snow or wind.

5.2.4. The weight of the water-filled pipe is a dead load that is most often evaluated as an additional uniformly distributed load.

5.2.4.1. The magnitude of this load can vary considerably depending on the size and type of pipe, the spacing between the pipe supports and the number of supports on each truss.

5.2.4.2. Alternatively, concentrated loads for the sprinkler system may be given when attachment locations are known.

5.2.4.3. Main sprinkler lines, risers and lines running parallel to trusses may require special design provisions.

5.2.5. Section 2.3.2.4 (d) of ANSI/TPI 1-2014 indicates that loads from fire sprinkler systems that are to be supported by trusses must be included by the Building Designer in the Construction Documents for the building.

2.3.2.4 Required Information in the Construction Documents.
(d) The location, direction, and magnitude of all dead, live, and lateral loads applicable to each Truss including, but not limited to, loads attributable to: roof, floor, partition, mechanical, fire sprinkler, attic storage, rain and ponding, wind, snow (including snow drift and unbalanced snow), seismic; and any other loads on the Truss

5.3. Sprinkler Systems Installed Per NFPA 13D

5.3.1. There are no special strength requirements specified for structural members supporting sprinkler piping designed and installed in accordance with NFPA 13D.

5.3.2. Chlorinated Polyvinyl Chloride (CPVC) and Crosslinked Polyethylene (PEX) tubing are the most common types of sprinkler pipe used in residential applications, with pipe sizes ranging from 1/2" to 1 1/4" in diameter.

5.3.2.1. Sprinkler systems with these sizes and types of pipes typically add less than 0.75 psf of dead load to the structural framing members and can be easily supported by most plumbing code recognized hangers.
5.3.3. Further, the additional weight of these sprinkler systems is usually accounted for in the miscellaneous dead load for the floor or roof system.

5.4. Serviceability Requirements

5.4.1. Sprinkler Systems Installed per NFPA 13 or NFPA 13R

5.4.1.1. NFPA 13 and NFPA 13R establish no minimum serviceability (i.e., deflection limitation) requirements for the structural members supporting the sprinkler piping or the 250-lb. concentrated load.

5.4.1.2. IBC Section 1604.3 includes the minimum serviceability requirements for structural systems and members. IBC Table 1604.3 provides maximum deflection limits for various construction and load conditions (Table 1).
5.4.1.3. As clarified in the Commentary to the 2012 IBC, the serviceability requirements provided in IBC Section 1604.3 are intended only for finished construction and do not apply to structural systems or members during construction.

Q3. In Table 1604.3, Note g states “dead load shall be taken as zero for structural steel members.” Would this apply to the precomposition check of composite beam deflection limits under wet weight of concrete?

A3. No. The serviceability requirements of Section 1604.3 apply to the finished construction. The loading condition described would be a construction consideration, which is not directly regulated by the serviceability criteria.

5.4.1.4. The weight of the water-filled pipe is a permanent (i.e., dead) load and is subject to the deflection limitations of IBC Table 1604.3, when evaluated in conjunction with total design load.
5.5. Sprinkler Systems Installed per *NFPA 13D*

5.5.1. There are no special serviceability requirements specified for structural members supporting sprinkler piping designed and installed in accordance with *NFPA 13D*.

5.5.2. The minimal additional dead load provided by these systems is subject to the deflection limitations of the *IRC*, when evaluated in conjunction with total design load.

6. Test and Engineering Substantiating Data:

6.1. The product(s) evaluated by this TER fall within the scope of one or more of the model, state or local building codes for building construction. The testing and/or substantiating data used in this TER is limited to buildings, structures, building elements, construction materials and civil engineering related specifically to buildings.

6.2. The provisions of model, state or local building codes for building construction do not intend to prevent the installation of any material or to prohibit any design or method of construction. Alternatives shall use consensus standards, performance-based design methods or other engineering mechanics based means of compliance. This TER assesses compliance with defined standards, accepted engineering analysis, performance-based design methods, etc. in the context of the pertinent building code requirements.

6.3. Some information contained herein is the result of testing and/or data analysis by other sources, which DrJ relies on to be accurate, as it undertakes its engineering analysis.

6.4. DrJ has reviewed and found the data provided by other professional sources are credible. The information in this TER conforms with DrJ’s procedure for acceptance of data from approved sources.

6.5. DrJ’s responsibility for data provided by approved sources conforms with *IBC Section 1703* and any relevant professional engineering law.

6.6. Where appropriate, DrJ’s analysis is based on design values that have been codified into law through codes and standards (e.g., *IRC, WFCM, IBC, SDPWS, NDS, ACI, AISI, PS-20, PS-2*, etc.). This includes review of code provisions and any related test data that aids in comparative analysis or provides support for equivalency to an intended end-use application. Where the accuracy of design values provided herein is reliant upon the published properties of commodity materials (e.g. lumber, steel, concrete, etc), DrJ relies upon grade/properties provided by the raw material supplier to be accurate and conforming to the mechanical properties defined in the relevant material standard.

7. Findings:

7.1. Sprinkler Systems Installed per *NFPA 13 or NFPA 13R*

7.1.1. The 250-lb. sprinkler installer load required by *NFPA 13* for structural members supporting sprinkler systems designed and installed in accordance with *NFPA 13 or NFPA 13R* requirements is an installation live load.

7.1.1.1. This is a very short-term load condition that will use a 2.0 load duration factor per *NDS Appendix B*.

7.1.1.2. This load is to be applied concurrently with only the design dead loads.

7.1.1.3. Trussway trusses account for this load as follows:

7.1.1.3.1. The 250-lb. sprinkler installer load is attached as a single point load hung from the top chord of the trusses, or

7.1.1.3.2. Is attached to the bottom chord of the trusses and is distributed to two adjacent trusses. See *Figure 1* for details.
Figure 1: Assumed Sprinkler Attachments to Trussway Trusses

7.1.1.4. Trusses designed to support this load shall include the following note

7.1.1.4.1. Note: The truss design accounts for IBC Section 903.3.1 and NFPA 13, NFPA 13R or NFPA 13D compliance requirements relating to a 250-lb. short-term ($C_o=2.0$) installer load to be supported at a hanger point on top chord or by two trusses on bottom chord, non-concurrent with other live loads.

7.1.2. The deflection limitations of the building code are not applicable to the 250-lb. concentrated load check because this loading condition typically occurs during the construction phase of the building.

7.1.2.1. This is a strength – not a deflection – issue, from a safety perspective.
7.1.3. The location, direction and magnitude of the dead load used to approximate the weight of the water-filled fire sprinkler system to be supported by the trusses must be provided by the Building Designer, or Trussway will apply 50-lbs.

7.1.3.1. This is a permanent load condition, the magnitude of which will be dependent on the size and spacing of the pipe.

7.1.3.2. When defined by the Building Designer, this load is added to the bottom chord dead load and is subject to the deflection limitations of IBC Table 1604.3 when evaluated in conjunction with other dead and live loads that are being applied to the truss system.

7.2. Sprinkler Systems Installed per NFPA 13D

7.2.1. The 250-lb. sprinkler installer load does not apply to sprinkler systems installed per the requirements of NFPA 13D.

7.2.2. Sprinkler systems installed per NFPA 13D typically weigh less than 0.75 psf.

7.2.3. These systems can easily be supported by most plumbing code recognized hangers.

7.2.4. The additional weight of these sprinkler systems is usually accounted for in the miscellaneous bottom chord dead load for the floor or roof system, unless otherwise specified by the Building Designer.

7.3. IBC Section 104.11 (IRC Section R104.11 and IFC Section 104.9 are similar) states:

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code. … Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons the alternative was not approved.

7.4. This product has been evaluated in the context of the codes listed in Section 2, and is compliant with all known state and local building codes. Where there are known variations in state or local codes that are applicable to this evaluation, they are listed here:

7.4.1. No known variations

7.5. This TER uses professional engineering law, the building code, ANSI/ASTM consensus standards and generally accepted engineering practice as its criteria for all testing and engineering analysis. DrJ’s professional engineering work falls under the jurisdiction of each state Board of Professional Engineers, when signed and sealed.

8. Conditions of Use:

8.1. Where required by the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

8.2. Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the code official for review and approval.

8.3. Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed and/or by the Building Designer (e.g., Owner, Registered Design Professional, etc.).

8.4. Design

8.4.1. Building Designer Responsibility

8.4.1.1. Unless the AHJ allows otherwise, the Construction Documents shall be prepared by a Building Designer for the Building and shall be in accordance with IRC Section R106 and IBC Section 107.

8.4.1.2. The Construction Documents shall be accurate and reliable and shall provide the location, direction and magnitude of all applied loads and shall be in accordance with IRC Section R301 and IBC Section 1603.
8.4.2. Construction Documents

8.4.2.1. Construction Documents shall be submitted to the Building Official for approval and shall contain the plans, specifications and details needed for the Building Official to approve such documents.

8.5. Responsibilities

8.5.1. The information contained herein is a product, material, detail, design and/or application TER evaluated in accordance with the referenced building codes, testing and/or analysis through the use of accepted engineering practice, experience and technical judgment.

8.5.2. DrJ TERs provide an assessment of only those attributes specifically addressed in the Products Evaluated or Code Compliance Process Evaluated sections.

8.5.3. The engineering evaluation was performed on the dates provided in this TER, within DrJ's professional scope of work.

8.5.4. This product is manufactured under a third-party quality control program in accordance with IRC Section R104.4 and R109.2 and IBC Section 104.4 and 110.4.

8.5.5. The actual design, suitability and use of this TER, for any particular building, is the responsibility of the Owner or the Owner's authorized agent, and the TER shall be reviewed for code compliance by the Building Official.

8.5.6. The use of this TER is dependent on the manufacturer’s in-plant QC, the ISO/IEC 17020 third-party quality assurance program and procedures, proper installation per the manufacturer’s instructions, the Building Official’s inspection and any other code requirements that may apply to demonstrate and verify compliance with the applicable building code.

9. Identification:

9.1. Each Trussway floor truss covered by this TER is identified on the truss design drawing (TDD) and/or the truss placement diagram (TPD) with the truss type.

9.2. Additional technical information can be found at trussway.com.

10. Review Schedule:

10.1. This TER is subject to periodic review and revision. For the most recent version of this TER, visit drjengineering.org.

10.2. For information on the current status of this TER, contact DrJ Engineering.