Technical Evaluation Report
TER 1211-01
Lamco Laminated Finger Jointed Lumber (LFL®) (BlueLinx)

Produits Forestiers Lamco Inc.

Product:
Lamco LFL® (Laminated Finger Jointed Lumber) Structural Wood Based Lumber or Advanced Engineered Lumber

Issue Date:
December 21, 2012
Revision Date:
September 4, 2019
Subject to Renewal:
April 1, 2020
1. Product Lines Evaluated:

1.1. Lamco LFL® (Laminated Finger Jointed Lumber) Structural Wood-Based Lumber or Advanced Engineered Lumber

1.2. For the most recent version of this Technical Evaluation Report (TER), visit drjcertification.org. For more detailed state professional engineering and code compliance legal requirements and references, visit drjcertification.org/statelaw. DrJ is fully compliant with all state professional engineering and code compliance laws.

1.3. This TER can be used to obtain product approval in any country that is an IAF MLA Signatory (all countries found here) and covered by an IAF MLA Evaluation per the Purpose of the MLA (as an example, see letter to ANSI from the Standards Council of Canada). Manufacturers can go to jurisdictions in the U.S., Canada and other IAF MLA Signatory Countries and have their products readily approved by authorities having jurisdiction using DrJ's ANSI accreditation.

1.4. Building code regulations require that evaluation reports are provided by an approved agency meeting specific requirements, such as those found in IBC Section 1703. Any agency accredited in accordance with ANSI ISO/IEC 17065 meets this requirement within ANSI’s scope of accreditation. For a list of accredited agencies, visit ANSI’s website. For more information, see drjcertification.org.

1.5. Requiring an evaluation report from a specific private company (i.e. ICC-ES, IAPMO, CCMC, DrJ, etc.) can be viewed as discriminatory and is a violation of international, federal, state, provincial and local anti-trust and free trade regulations.

1.6. DrJ's code compliance work:

1.6.1. Conforms to code language adopted into law by individual states and any relevant consensus based standard such as an ANSI or ASTM standard.

1.6.2. Complies with accepted engineering practice, all professional engineering laws and by providing an engineer's seal DrJ take professional responsibility for its specified scope of work.
2. Applicable Codes and Standards: ¹
 2.2. 2012, 2015 and 2018 International Residential Code (IRC)
 2.3. 2010 and 2015 National Building Code of Canada (NBC)
 2.4. 2014 and 2017 Florida Building Code – Building (FBC-B)
 2.5. 2014 and 2017 Florida Building Code – Residential (FBC-R)
 2.6. 2016 California Green Building Standards Code (CALGreen) Title 24, Part 11
 2.7. ANSI/AWC NDS® – National Design Specification® (NDS®) for Wood Construction
 2.10. ASTM D5764 – Standard Test Method for Evaluating Dowel-Bearing Strength of Wood and Wood-Based Products
 2.11. CSA O86 – Engineering Design in Wood
 2.12. EN 14374 – Timber Structures Structural Laminated Veneer Lumber Requirements

3. Performance Evaluation:
 3.1. Lamco LFL® was tested and evaluated to determine its resistance properties, which are used to develop reference design values for allowable stress design (ASD) and limit states design (LSD). This TER examines Lamco LFL® for:
 3.1.1. Use as an alternative material to that described in IBC Chapter 23, in particular, compliance with the requirements noted in Section 2301.2 for ASD.
 3.1.2. Compliance with IBC Section 2304 and 2308 and IRC Chapter 5, 6 and 8 for conventional light-frame construction applications.
 3.1.3. Use as an alternative material and method of construction in compliance with IBC Section 104.11 and IRC Section R104.11.
 3.1.3.1. When used in an application that exceeds the limits of IRC Section R301, an engineered design shall be submitted in accordance with Section R301.1.3 and this TER.
 3.1.4. Structural capacities in accordance with IBC Section 2303.1.10.
 2303.1.10 Structural composite lumber. Structural capacities for structural composite lumber shall be established and monitored in accordance with ASTM D5456.
 3.1.5. Structural capacity in accordance with NBC Part 4 and 9 and CSA O86.
 3.1.6. Fire-resistance properties of Lamco LFL® are evaluated with regard to equivalence to solid-sawn lumber in accordance with the IBC, IRC and NBC.
 3.2. Any code compliance issues not specifically addressed in this section are outside the scope of this TER.

4. Product Description and Materials:
 4.1. Lamco LFL® is manufactured by Produits Forestiers Lamco Inc. at its facility in Saint-Félicien, Quebec.
 4.2. The product is made from rough sawn Black Spruce predominantly, classified according to LAMCO’s Quality Control Manual or SPF #2 and better or MSR lumber. Short segments of the lumber are assembled with tongue and groove joints along the length of the members and finger joints across the width of the members.

¹ Unless otherwise noted, all references in this code compliant technical evaluation report (TER) are from the 2018 version of the codes and the standards referenced therein, including, but not limited to, ASCE 7, SDPWS and WFCM. This product also complies with the 2000-2015 versions of the IBC and IRC and the standards referenced therein. As required by law, where this TER is not approved, the building official shall respond in writing, stating the reasons this TER was not approved. For variations in state and local codes, if any, if any see Section 8. Unless otherwise noted, IBC/IRC reference numbers are the same as FBC-B/FBC-R references.
4.3. All joints are adhered with a heat-resistant adhesive (HRA) of phenol-resorcinol-formaldehyde (PRF). LOCTITE HB X032 PURBOND may also be used in the finger joints and Purbond® GT-20 may be used in the tongue and groove joints. All adhesives are HRA classified and qualified in accordance with ASTM D2559.

4.4. The wood lumber properties and species, adhesive, manufacturing parameters, and finished product dimensions and tolerances are specified in the approved quality documentation and Lamco’s in-plant manufacturing standard.

4.5. Material Availability

4.5.1. Grades: 1.6E, 1.7E, 1.9E and 2.1E

4.5.2. Thickness: 17/16" (36.5 mm) and 1 1/2" (38.1 mm)

4.5.3. Width: 2 1/2" to 16" (63.5 mm to 406 mm)

4.5.4. Length: up to 32' 1" (9.8 m)

5. Applications:

5.1. Lamco LFL® is an alternative to sawn lumber for floor, roof and wall structural members.

5.2. Structural applications include use as beams, columns, headers, joists, rafters, chords and webs of trusses, I-joint flanges, rim boards and wall studs.

5.3. Lamco LFL® is used as an equivalent alternative to sawn lumber for use where fire resistance is required as follows:

5.3.1. Lamco LFL® with a minimum thickness of 17/16" may be used as an equivalent alternative to 1 1/2"-thick solid-sawn lumber in accordance with the IBC, IRC and NBC.

5.4. Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience and technical judgment.

5.5. Design

5.5.1. Design of Lamco LFL® is governed by the applicable code and the provisions for structural composite lumber (SCL) in NDS® or CSA O86.

5.5.2. Cuts, notches and holes in structural members shall comply with the applicable building code for sawn lumber and this TER. For applications outside of the scope of the applicable code, consult the manufacturer’s installation instructions or a Registered Design Professional.

5.5.3. Uniformly loaded beams may have holes bored in the member, provided such holes are entirely in the center 1/3 of the member in both the length and depth dimensions.

5.5.4. For buildings constructed in accordance with IBC Section 2308 and IRC Chapter 5, 6 and 8 and subject to the limitations therein, the following conditions apply:

5.5.4.1. Holes bored in joists, rafters and ceiling joists shall not be within 2" (51 mm) of the top or bottom of the joist, and the diameter of any such hole shall not exceed 1/8 the depth of the joist.

5.5.4.2. Holes bored into studs shall not exceed 40% of the stud width, and the edge of the boring shall be no closer than 5/16" from the edge of the stud.

5.5.4.3. Holes shall not be located in the same section of the stud as a cut or notch.

5.5.4.4. Notches in the top or bottom of joists, rafters and ceiling joists shall not exceed 1/6 the depth and shall not be located in the middle 1/3 of the span.

5.5.4.5. Notches on the ends of joists, rafters and ceiling joists shall not exceed 1/4 the joist depth.

5.5.4.6. In load bearing walls, Lamco LFL® is permitted to be cut or notched to a depth not exceeding 25% of its width.

5.5.4.7. In non-load bearing walls, Lamco LFL® is permitted to be cut or notched to a depth not exceeding 40% of its width.
5.5.4.8. Notches on cantilevered portions of rafters (e.g., notches at exterior bearing walls) are permitted, provided the dimension of the remaining portion of the rafter is not less than 3\(\frac{1}{2}\)" and the length of the cantilever does not exceed 24".

5.5.4.9. Taper cuts at the ends of ceiling joists shall not exceed \(\frac{1}{4}\) the depth of the joist measured at the inside of the bearing.

5.5.5. Unless otherwise noted, adjustment of the design stresses for duration of load shall be in accordance with the applicable code.

5.5.6. The design provisions for wood construction noted in IBC Section 2301.2 and IRC Section R301.1.3 apply to Lamco LFL® for ASD, unless otherwise noted in this TER. Allowable unit stresses for Lamco LFL® for dry conditions of use are specified in Table 1.

Table 1: Reference Design Values for Lamco LFL® (ASD)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Bending, (F_b) (psi)</th>
<th>Tension, (F_t) (psi)</th>
<th>Compression, (F_c) (psi)</th>
<th>Horizontal Shear, (F_v) (psi)</th>
<th>Modulus of Elasticity, (E) (x10^6 psi)</th>
<th>Modulus of Elasticity for Beam & Column Stability, (E_{\text{min}}) (x10^6 psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6E</td>
<td>1200</td>
<td>1300</td>
<td>1600</td>
<td>425</td>
<td>135</td>
<td>1.6</td>
</tr>
<tr>
<td>1.7E</td>
<td>1800</td>
<td>1585</td>
<td>1925</td>
<td>595</td>
<td>180</td>
<td>1.7</td>
</tr>
<tr>
<td>1.9E</td>
<td>2300</td>
<td>1800</td>
<td>2190</td>
<td>675</td>
<td>205</td>
<td>1.9</td>
</tr>
<tr>
<td>2.1E</td>
<td>2300</td>
<td>2175</td>
<td>2660</td>
<td>675</td>
<td>250</td>
<td>2.1</td>
</tr>
</tbody>
</table>

1. \(1 \text{ psi} = 0.00689 \text{ MPa or } 1 \text{ MPa} = 145 \text{ psi}\)
2. The reference design values in this table are applicable for the product used in dry, well-ventilated interior applications, in which the equivalent moisture content of sawn lumber is less than 16%.
3. The reference design values in this table are for normal load duration. Loads of longer or shorter duration shall be adjusted in accordance with the applicable code. Duration of load adjustments shall not be applied to \(F_c\), \(E\) or \(E_{\text{min}}\).
4. Orientation nomenclature for Lamco LFL®.
5. Using True (shear free) \(E\), deflection is calculated as follows for uniformly loaded simple span beams:

\[\Delta = \frac{5WL^4}{384Eb^{3}} + \frac{15WL^2}{16Eb^{2}} \]

where:
- \(\Delta\) = deflection in inches (mm)
- \(W\) = uniform load in lbs./in. (N/mm)
- \(L\) = span in inches (mm)
- \(E\) = modulus of elasticity in psi (MPa)
- \(b\) = width of beam in inches (mm)
- \(h\) = depth of beam in inches (mm)

6. The bending values in these tables are based on a reference depth of 12" (305 mm). For other depths, the bending value for 1.6E grade shall be adjusted by a size factor adjustment of (12d)/(12d^0.34), where \(d\) is measured in inches with a minimum depth of 2.5" (64 mm). For other depths of the 1.7E, 1.9E and 2.1E grades, the bending values shall be adjusted by a size factor adjustment of (12d)/(12d^0.25) where \(d\) is measured in inches with a minimum depth of 2.5" (64 mm). Bending values are further limited to 2455 psi for 1.9E and 2795 psi for 2.1E grades. For flatwise bending, values are permitted to be increased by a factor of 1.1 for 2" thick and 4" and larger widths.
7. The tension, \(F_t\) value for the 1.6E grade is based on a reference length of 24". For lengths up to 24", multiply \(F_t\) by \(K_t = (24L)^{0.15}\), where \(L\) is the length in inches.
8. The tension, \(F_t\) values for 1.7E and 1.9E grades are based on a reference length of 88" (7'4"). For lengths greater than 88", multiply \(F_t\) by \(K_t = (88L)^{0.125}\), where \(L\) is the length in inches.
9. The tension, \(F_t\) value for the 2.1E grade is based on a reference length of 88" (7'4"). For lengths greater than 88", multiply \(F_t\) by \(K_t = (88L)^{0.125}\), where \(L\) is the length in inches.
10. When structural members qualify as repetitive members in accordance with the applicable code, a 4% increase is permitted to \(F_t\).
5.5.7. For compliance with the NBC, limit states design shall be in accordance with CSA O86. Specified Strength Values for Lamco LFL® for dry conditions of use are specified in Table 2.

Table 2: Specified Strengths for Lamco LFL® (LSD)\(^{1,2,3,4}\)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Bending, (F_b) (MPa)</th>
<th>Tension, (F_t) (MPa)</th>
<th>Compression, (F_c) (MPa)</th>
<th>Horizontal Shear, (F_v) (MPa)</th>
<th>Modulus of Elasticity for Beam & Column Stability, (E_{min}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beam(^6,10)</td>
<td>Parallel-to-Grain</td>
<td>Parallel-to-Grain</td>
<td>Perpendicular-to-Grain</td>
<td>Beam</td>
</tr>
<tr>
<td>1.6E</td>
<td>14.25</td>
<td>16.41(^7)</td>
<td>17.61</td>
<td>5.33</td>
<td>1.72</td>
</tr>
<tr>
<td>1.7E</td>
<td>22.71</td>
<td>20.19(^8)</td>
<td>21.21</td>
<td>7.46</td>
<td>2.29</td>
</tr>
<tr>
<td>1.9E</td>
<td>29.27</td>
<td>22.95(^8)</td>
<td>24.10</td>
<td>8.47</td>
<td>2.60</td>
</tr>
<tr>
<td>2.1E</td>
<td>29.27</td>
<td>27.69(^9)</td>
<td>29.31</td>
<td>8.47</td>
<td>3.20</td>
</tr>
</tbody>
</table>

1. 1 psi = 0.00689 MPa or 1 MPa = 145 psi.
2. The reference design values in this table are applicable for the product used in dry, well-ventilated interior applications, in which the equivalent moisture content of sawn lumber is less than 16%.
3. The reference design values in this table are for normal load duration. Loads of longer or shorter duration shall be adjusted in accordance with the applicable code. Duration of load adjustments shall not be applied to \(F_c\), \(E\), and \(E_{min}\).
4. Orientation nomenclature for Lamco LFL®.
5. Using True (shear free) \(E\), deflection is calculated as follows for uniformly loaded simple span beams:
 \[\Delta = \left(\frac{5WL^4}{32Eb^3} \right) + \left(\frac{12WL^2}{5Ebh} \right) \]
 where: \(\Delta = \) deflection in inches (mm)
 \(W = \) uniform load in lbs./in. (N/mm)
 \(L = \) span in inches (mm)
 \(E = \) modulus of elasticity in psi (MPa)
 \(b = \) width of beam in inches (mm)
 \(h = \) depth of beam in inches (mm)
6. The bending values in these tables are based on a reference depth of 12" (305 mm). For other depths, the bending value for 1.6E grade shall be adjusted by a size factor adjustment of \((12/d)^{0.34}\), where \(d\) is measured in inches with a minimum depth of 2.5" (64 mm). For other depths of the 1.7E, 1.9E and 2.1E grades, the bending values shall be adjusted by a size factor adjustment of \((12/d)^{0.25}\) where \(d\) is measured in inches with a minimum depth of 2.5" (64 mm). Bending values are further limited to 31.28 MPa for 1.9E and 35.61 MPa for 2.1E grades.
7. The tension, \(F_t\) value for the 1.6E grade is based on a reference length of 24". For lengths up to 24', multiply \(F_t\) by \(K_L\). \(K_L = (24/L)^{0.15}\), where \(L\) is the length in inches.
8. The tension, \(F_t\) values for 1.7E and 1.9E grades are based on a reference length of 88" (7'4`). For lengths greater than 88", multiply \(F_t\) by \(K_L\). \(K_L = (88/L)^{0.13}\), where \(L\) is the length in inches.
9. The tension, \(F_t\) value for the 2.1E grade is based on a reference length of 88" (7'4`). For lengths greater than 88", multiply \(F_t\) by \(K_L\). \(K_L = (88/L)^{0.12}\), where \(L\) is the length in inches.
10. When structural members qualify as repetitive members in accordance with the applicable code, a 4% increase is permitted to \(F_b\).

5.5.8. Connections

5.5.8.1. Lateral loads for nails, screws and bolts, and withdrawal loads for nails and screws, installed in Lamco LFL® shall be in accordance with the NDS® and CSA O86 for sawn lumber having a minimum specific gravity equal to that shown in Table 3.

5.5.8.2. Fastener spacing shall be as prescribed in the applicable code (for sawn lumber) unless specifically indicated in Figure 1 or Table 4 or as prescribed in NDS® Part 11.

5.5.8.3. Other nail spacing for specific applications, such as prefabricated steel components or hangers, may be used. Nail spacing for these applications should follow what is specified and detailed in the proprietary catalogues for the specific gravities as defined in Table 3.

5.5.8.4. Allowable lateral loads for machine bolts installed perpendicular to the wide face of Lamco LFL® with loads applied parallel or perpendicular to the grain shall be as prescribed in the applicable code or in accordance with NDS® or CSA O86 for sawn lumber with the minimum specific gravity at least equivalent to that defined in Table 3.
Table 3: Equivalent Specific Gravities & Minimum Fastener Spacing for Design of Mechanical Connections

<table>
<thead>
<tr>
<th>Product</th>
<th>Fastener</th>
<th>Fastener Axis Location</th>
<th>Load Direction</th>
<th>Angle to Grain</th>
<th>Equivalent Specific Gravity for Design Purposes – Grade 1.6E</th>
<th>Equivalent Specific Gravity for Design Purposes – Grades 1.7E, 1.9E & 2.1E</th>
<th>Minimum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamco LFL®</td>
<td>Nails & Screws (<0.25” dia.)</td>
<td>Wide Face</td>
<td>Lateral</td>
<td>Any</td>
<td>0.44</td>
<td>0.44</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Narrow Face</td>
<td>Lateral</td>
<td>Any</td>
<td>0.44</td>
<td>0.44</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X & Y Axes</td>
<td>Withdrawal</td>
<td>–</td>
<td>0.44</td>
<td>0.45</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
<tr>
<td>Bolts</td>
<td>Wide Face</td>
<td>Lateral</td>
<td>Lateral</td>
<td>0 degrees</td>
<td>0.44</td>
<td>0.46</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
<tr>
<td></td>
<td>Narrow Face</td>
<td>Lateral</td>
<td>Lateral</td>
<td>90 degrees</td>
<td>0.42</td>
<td>0.42</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 degrees</td>
<td>0.39</td>
<td>0.39</td>
<td>Per Applicable Code for Solid-Sawn Material</td>
</tr>
</tbody>
</table>

5.5.8.5. Connection requirements for multiple member side-loaded beams are defined in the following assembly details and have the maximum uniformly distributed load carrying capacity as defined in Table 4.

Table 4: Connection Requirements & Allowable Uniform Loads for Multiple Member Side-Loaded Beams

<table>
<thead>
<tr>
<th>Assembly Detail (See Figure 1)</th>
<th>Allowable Load for Connection of Beams Loaded from One Side Only</th>
<th>Allowable Load (per side) for Connection of Beams Loaded from Both Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Rows of 10d (0.148” x 3”) Nails at 12” o.c.</td>
<td>3 Rows of 10d (0.148” x 3”) Nails at 12” o.c.</td>
</tr>
<tr>
<td>A</td>
<td>415</td>
<td>625</td>
</tr>
<tr>
<td>B</td>
<td>310</td>
<td>465</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

1. Multiply the appropriate table value by:
 a. 1.5 for nails or bolts spaced at 8” o.c. per row
 b. 2 for nails or bolts spaced at 6” o.c. per row
 c. 3 for nails or bolts spaced at 4” o.c. per row
 d. 0.5 for bolts spaced at 24” o.c. per row
2. Determine the appropriate beam size required to support the load before determining the connection requirements.
3. Screws can be used in place of bolts, provided additional fasteners are used such that the sum of the screw capacities is equal to or greater than that of the ½”-diameter bolts. Refer to the screw manufacturer's literature.
4. Tabulated values assume adequate end distance, edge distance and spacing per Chapter 11 of NDS® or Chapter 10 of CSA O86.
5. Tabulated values are for normal load duration. Adjustment of the design stresses for duration of load shall be in accordance with the applicable code or NDS®, as applicable.
6. For beams greater than 5-ply wide, consult a Registered Design Professional for the attachment requirements.
7. A standard cut steel washer of minimum 0.118” thickness, with a minimum outside dimension of 1¾”, is required on each side of the beam between the wood and bolt head and nut.
8. Bolted connections assume full diameter bolts with bending yield strength (Fy) of 45,000 psi and lumber with a SG of 0.42.
9. Nailing is required from both sides for 3-ply beams.
10. The allowable loads provided above for connection of beams loaded from both sides are the maximum that can be applied to each side of the beam.
5.5.9. Stair Stringer

5.5.9.1. Lamco LFL® is approved for use in stair stringer applications when designed and installed in accordance with Figure 2 and Tables 5, 6, 7, 8 and 9.

Figure 2: Lamco LFL® Star Stringer Specifications

<table>
<thead>
<tr>
<th>Stringer Depth (in.)</th>
<th>Residential (7¾" rise/10" run)</th>
<th>Commercial (7" rise/11" run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9¼</td>
<td>3⅛"</td>
<td>3⅛"</td>
</tr>
<tr>
<td>9⅜</td>
<td>3⅜"</td>
<td>3⅛"</td>
</tr>
<tr>
<td>11¼</td>
<td>5⅛"</td>
<td>5⅛"</td>
</tr>
<tr>
<td>11¾</td>
<td>5⅜"</td>
<td>6"</td>
</tr>
<tr>
<td>14</td>
<td>7⅛"</td>
<td>8⅛"</td>
</tr>
</tbody>
</table>
Table 6: Residential Horizontal Stringer Run Length of Lamco LFL® 1.6E – 40 psf Live Load and 12 psf Dead Load

<table>
<thead>
<tr>
<th>Stringer Depth (in.)</th>
<th>36" Tread Width</th>
<th>42" Tread Width</th>
<th>44" Tread Width</th>
<th>48" Tread Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>Bracing</td>
<td>No Bracing</td>
<td>Bracing</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9(\frac{1}{4})</td>
<td>5'-0"</td>
<td>N/A</td>
<td>5'-0"</td>
<td>N/A</td>
</tr>
<tr>
<td>9(\frac{1}{2})</td>
<td>5'-0"</td>
<td>5'-10"</td>
<td>6'-8"</td>
<td>5'-10"</td>
</tr>
<tr>
<td>11(\frac{1}{4})</td>
<td>8'-4"</td>
<td>8'-4"</td>
<td>9'-2"</td>
<td>10'-0"</td>
</tr>
<tr>
<td>11(\frac{3}{8})</td>
<td>9'-2"</td>
<td>10'-0"</td>
<td>10'-0"</td>
<td>10'-0"</td>
</tr>
<tr>
<td>14</td>
<td>12'-6"</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
</tr>
<tr>
<td>16</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
</tr>
</tbody>
</table>

N/A=Bracing not permitted due to interference with step notches.

1. Stringer runs are based on a tread rise of 7.75" (maximum per 2015 IRC), a tread run of 10" (minimum per 2015 IRC), rounded down to the whole tread run.
2. Table based on deflection requirement of L360 live load and L240 total load; material thickness of 1.43475 in.; interior bearing length of 3 inches and a bearing plate capacity of 425 psi.
3. Stringers are unstable until treads are installed.
4. Use subfloor adhesive between treads and stringers to minimize squeaks.
5. Avoid direct contact between stringers and concrete or masonry by using flashing or a vapor barrier.
6. Bracing must be 2x4 No. 1/No. 2 SPF (E=1.4), one face (see details above).
7. Do not ship precut stringers. Cut on job site or ship as complete stair units.
8. Table presumes stair width is equally shared by all stringers.
9. Maximum stair stringer run is capped based on the difference between floors of 12.25 ft (Residential) & 12 ft (Commercial).
10. Design of tread is done by others; a tread thickness of 1 in. was assumed for geometry.
11. Stringer self-weight is considered in addition to the stated design dead load.
12. Do not overcut the notch corner. Drill 0.25 in. diameter hole at stringer notch corner during fabrication.
13. Repetitive bending factor of 1.04 used where permitted by NDS®.

Table 7: Residential Horizontal Stringer Run Length of Lamco LFL® 1.7E – 40 psf Live Load and 12 psf Dead Load

<table>
<thead>
<tr>
<th>Stringer Depth (in.)</th>
<th>36" Tread Width</th>
<th>42" Tread Width</th>
<th>44" Tread Width</th>
<th>48" Tread Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>Bracing</td>
<td>No Bracing</td>
<td>Bracing</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9(\frac{1}{4})</td>
<td>5'-0"</td>
<td>N/A</td>
<td>5'-10"</td>
<td>N/A</td>
</tr>
<tr>
<td>9(\frac{1}{2})</td>
<td>5'-0"</td>
<td>6'-8"</td>
<td>7'-6"</td>
<td>5'-10"</td>
</tr>
<tr>
<td>11(\frac{1}{4})</td>
<td>8'-4"</td>
<td>9'-2"</td>
<td>10'-0"</td>
<td>9'-2"</td>
</tr>
<tr>
<td>11(\frac{3}{8})</td>
<td>10'-0"</td>
<td>11'-8"</td>
<td>10'-0"</td>
<td>10'-0"</td>
</tr>
<tr>
<td>14</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
</tr>
<tr>
<td>16</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
<td>14'-2"</td>
</tr>
</tbody>
</table>

N/A=Bracing not permitted due to interference with step notches.

1. Stringer runs are based on a tread rise of 7.75" (maximum per 2015 IRC), a tread run of 10" (minimum per 2015 IRC), rounded down to the whole tread run.
2. Table based on deflection requirement of L360 live load and L240 total load; material thickness of 1.43475 in.; interior bearing length of 3 inches and a bearing plate capacity of 425 psi.
3. Stringers are unstable until treads are installed.
4. Use subfloor adhesive between treads and stringers to minimize squeaks.
5. Avoid direct contact between stringers and concrete or masonry by using flashing or a vapor barrier.
6. Bracing must be 2x4 No. 1/No. 2 SPF (E=1.4), one face (see details above).
7. Do not ship precut stringers. Cut on job site or ship as complete stair units.
8. Table presumes stair width is equally shared by all stringers.
9. Maximum stair stringer run is capped based on the difference between floors of 12.25 ft (Residential) & 12 ft (Commercial).
10. Design of tread is done by others; a tread thickness of 1 in. was assumed for geometry.
11. Stringer self-weight is considered in addition to the stated design dead load.
12. Do not overcut the notch corner. Drill 0.25 in. diameter hole at stringer notch corner during fabrication.
13. Repetitive bending factor of 1.04 used where permitted by NDS®.
Table 8: Commercial Horizontal Stringer Run Length of Lamco LFL® 1.6E – 100 psf Live Load and 12 psf Dead Load

<table>
<thead>
<tr>
<th>Stringer Depth (in.)</th>
<th>36" Tread Width</th>
<th>42" Tread Width</th>
<th>44" Tread Width</th>
<th>48" Tread Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>Bracing</td>
<td>No Bracing</td>
<td>Bracing</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
</tr>
<tr>
<td>9½4</td>
<td>3'-8"</td>
<td>3'-8"</td>
<td>4'-7"</td>
<td>4'-7"</td>
</tr>
<tr>
<td>9½2</td>
<td>3'-8"</td>
<td>3'-8"</td>
<td>4'-7"</td>
<td>4'-7"</td>
</tr>
<tr>
<td>11½4</td>
<td>6'-5"</td>
<td>6'-5"</td>
<td>7'-4"</td>
<td>7'-4"</td>
</tr>
<tr>
<td>11½6</td>
<td>6'-5"</td>
<td>6'-5"</td>
<td>8'-3"</td>
<td>8'-3"</td>
</tr>
<tr>
<td>14</td>
<td>9'-2"</td>
<td>9'-2"</td>
<td>11'-0"</td>
<td>11'-0"</td>
</tr>
<tr>
<td>16</td>
<td>11'-0"</td>
<td>11'-0"</td>
<td>13'-9"</td>
<td>13'-9"</td>
</tr>
</tbody>
</table>

N/A=Bracing not permitted due to interference with step notches.
1. Stringer runs are based on a tread rise of 7.75" (maximum per 2015 IRC), a tread run of 10" (minimum per 2015 IRC), rounded down to the whole tread run.
2. Table based on deflection requirement of L360 live load and L240 total load; material thickness of 1.43475 in.; and interior bearing length of 3 inches and a bearing plate capacity of 425 psi.
3. Stringers are unstable until treads are installed.
4. Use subfloor adhesive between treads and stringers to minimize squeaks.
5. Avoid direct contact between stringers and concrete or masonry by using flashing or a vapor barrier.
6. Bracing must be 2x4 No. L/No. 2 SPF (E=1.4), one face (see details above).
7. Do not ship precut stringers. Cut on job site or ship as complete stair units.
8. Table presumes stair width is equally shared by all stringers.
9. Maximum stair stringer run is capped based on the difference between floors of 12.25 ft (Residential) & 12 ft (Commercial).
10. Design of tread is done by others; a tread thickness of 1 in. was assumed for geometry.
11. Stringer self-weight is considered in addition to the stated design dead load.
12. Do not overcut the notch corner. Drill 0.25 in. diameter hole at stringer notch corner during fabrication.
13. Repetitive bending factor of 1.04 used where permitted by NDS®.

Table 9: Commercial Horizontal Stringer Run Length of Lamco LFL® 1.7E – 100 psf Live Load and 12 psf Dead Load

<table>
<thead>
<tr>
<th>Stringer Depth (in.)</th>
<th>36" Tread Width</th>
<th>42" Tread Width</th>
<th>44" Tread Width</th>
<th>48" Tread Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
<td>3 stringers</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>Bracing</td>
<td>No Bracing</td>
<td>Bracing</td>
</tr>
<tr>
<td></td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
<td>No Bracing</td>
</tr>
<tr>
<td>9½4</td>
<td>3'-8"</td>
<td>4'-7"</td>
<td>5'-6"</td>
<td>5'-6"</td>
</tr>
<tr>
<td>9½2</td>
<td>4'-7"</td>
<td>4'-7"</td>
<td>6'-5"</td>
<td>6'-5"</td>
</tr>
<tr>
<td>11½4</td>
<td>6'-5"</td>
<td>7'-4"</td>
<td>8'-3"</td>
<td>8'-3"</td>
</tr>
<tr>
<td>11½6</td>
<td>7'-4"</td>
<td>8'-3"</td>
<td>9'-2"</td>
<td>9'-2"</td>
</tr>
<tr>
<td>14</td>
<td>10'-1"</td>
<td>11'-0"</td>
<td>12'-10"</td>
<td>12'-10"</td>
</tr>
<tr>
<td>16</td>
<td>12'-10"</td>
<td>14'-8"</td>
<td>16'-6"</td>
<td>16'-6"</td>
</tr>
</tbody>
</table>

N/A=Bracing not permitted due to interference with step notches.
1. Stringer runs are based on a tread rise of 7.75" (maximum per 2015 IRC), a tread run of 10" (minimum per 2015 IRC), rounded down to the whole tread run.
2. Table based on deflection requirement of L360 live load and L240 total load; material thickness of 1.43475 in.; and interior bearing length of 3 inches and a bearing plate capacity of 425 psi.
3. Stringers are unstable until treads are installed.
4. Use subfloor adhesive between treads and stringers to minimize squeaks.
5. Avoid direct contact between stringers and concrete or masonry by using flashing or a vapor barrier.
6. Bracing must be 2x4 No. L/No. 2 SPF (E=1.4), one face (see details above).
7. Do not ship precut stringers. Cut on job site or ship as complete stair units.
8. Table presumes stair width is equally shared by all stringers.
9. Maximum stair stringer run is capped based on the difference between floors of 12.25 ft (Residential) & 12 ft (Commercial).
10. Design of tread is done by others; a tread thickness of 1 in. was assumed for geometry.
11. Stringer self-weight is considered in addition to the stated design dead load.
12. Do not overcut the notch corner. Drill 0.25 in. diameter hole at stringer notch corner during fabrication.
13. Repetitive bending factor of 1.04 used where permitted by NDS®.
6. Installation:
 6.1. Lamco LFL® shall be installed in accordance with the applicable code, the approved construction documents, this TER, the manufacturer’s installation instructions, NDS® or CSA O86 and standard framing practice as applied to solid-sawn lumber.
 6.1.1. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

7. Test and Engineering Substantiating Data:
 7.1. Test results and data by PFS for establishing the mechanical properties of Lamco LFL®.
 7.2. The product(s) evaluated by this TER fall within the scope of one or more of the model, state or local building codes for building construction. The testing and/or substantiating data used in this TER is limited to buildings, structures, building elements, construction materials and civil engineering related specifically to buildings.
 7.3. The provisions of model, state or local building codes for building construction do not intend to prevent the installation of any material or to prohibit any design or method of construction. Alternatives shall use consensus standards, performance-based design methods or other engineering mechanics based means of compliance. This TER assesses compliance with defined standards, accepted engineering analysis, performance-based design methods, etc. in the context of the pertinent building code requirements.
 7.4. Some information contained herein is the result of testing and/or data analysis by other sources, which DrJ relies on to be accurate, as it undertakes its engineering analysis.
 7.5. DrJ has reviewed and found the data provided by other professional sources are credible. The information in this TER conforms to DrJ’s procedure for acceptance of data from approved sources.
 7.6. DrJ’s responsibility for data provided by approved sources conforms to IBC Section 1703 and any relevant professional engineering law.
 7.7. Where appropriate, DrJ’s analysis is based on design values that have been codified into law through codes and standards (e.g., IRC, WFCM, IBC, SDPWS, NDS®, ACI®, AISI, PS-20, PS-2, etc.). This includes review of code provisions and any related test data that aids comparative analysis or provides support for equivalency to an intended end-use application. Where the accuracy of design values provided herein is reliant upon the published properties of commodity materials (e.g. lumber, steel, concrete, etc), DrJ relies upon grade/properties provided by the raw material supplier to be accurate and conforming to the mechanical properties defined in the relevant material standard.

8. Findings:
 8.1. When used in accordance with the manufacturer’s installation instructions and this TER, Lamco LFL® complies with, or is a suitable alternative to, the requirements of IBC Chapter 23; IRC Chapter 5, 6 and 8; NBC Articles, 1.2, 4.3.11 and 9.23; and CSA O86.
 8.2. IBC Section 104.11 (IRC Section R104.11 and IFC Section 104.9 are similar) states:

 104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code. ... Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons the alternative was not approved.

 8.3. This product has been evaluated in the context of the codes listed in Section 2 and is compliant with all known state and local building codes. Where there are known variations in state or local codes that are applicable to this evaluation, they are listed here:
 8.3.1. No known variations
8.4. This TER uses professional engineering law, the building code, ANSI/ASTM consensus standards and generally accepted engineering practice as its criteria for all testing and engineering analysis. DrJ’s professional engineering work falls under the jurisdiction of each state Board of Professional Engineers, when signed and sealed.

9. Conditions of Use:

9.1. Where required by the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

9.2. Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the code official for review and approval.

9.3. Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed.

9.4. Lamco LFL® shall be installed in accordance with the applicable code, the approved construction documents, this TER and the manufacturer’s installation instructions. If there is a conflict between this TER and the manufacturer’s instructions, the more restrictive shall govern.

9.5. The manufacturer’s published installation instructions shall be available at the jobsite at all times during installation.

9.6. Lamco LFL® complies with, or is a suitable alternative to, sawn lumber as permitted by the codes listed in Section 2, subject to the following conditions:

9.6.1. The service conditions for Lamco LFL® are dry conditions of use, for which the equilibrium moisture content must be less than 16%. Use in applications exceeding 16% moisture content is outside the scope of this TER.

9.6.2. The service conditions for Lamco LFL® with fire-retardant or preservative chemical treatments are outside the scope of this TER.

9.6.3. Fastener design values shall be determined using equivalent specific gravities specified in Table 3 of this TER.

9.6.4. Cutting and notching of Lamco LFL® is prohibited, except where specifically permitted by the manufacturer’s recommendations, this TER or where the effects of such alterations are specifically considered in the design of the member by a Registered Design Professional.

9.6.5. Increases for duration of load shall be in accordance with the limitations of the applicable building code for sawn lumber.

9.6.6. The product is considered acceptable for using the creep factors applicable to sawn lumber in accordance with the applicable building code.

9.6.7. Where use of Lamco LFL® qualifies as repetitive members as defined in NDS®, an increase of 4% is permitted in allowable bending stresses.

9.6.8. Lamco LFL® may be cut to the specified length and width as appropriate for the application, provided the depth is no less than 2½". The thickness may not be cut.

9.6.9. Minimum bearing length and anchorage of Lamco LFL® shall meet the requirements of IBC Chapter 23 or Division B, Article 9.23 of the NBC, and CSA O86 for sawn lumber.

9.6.10. Lamco LFL® shall be fabricated by Produits Forestiers Lamco Inc. at its facility in Saint-Félicien, Quebec, with quality control inspections by an approved third-party quality control inspection agency.

9.7. Design

9.7.1. Building Designer Responsibility

9.7.1.1. Unless the AHJ allows otherwise, the Construction Documents shall be prepared by a Building Designer (e.g., Owner, Registered Design Professional, etc.) for the Building and shall be in accordance with IRC Section R106 and IBC Section 107.
9.7.1.2. The Construction Documents shall be accurate and reliable and shall provide the location, direction and magnitude of all applied loads and shall be in accordance with IRC Section R301 and IBC Section 1603.

9.7.2. Construction Documents

9.7.2.1. Construction Documents shall be submitted to the Building Official for approval and shall contain the plans, specifications and details needed for the Building Official to approve such documents.

9.8. Responsibilities

9.8.1. The information contained herein is a product, material, detail, design and/or application TER evaluated in accordance with the referenced building codes, testing and/or analysis through the use of accepted engineering practice, experience and technical judgment.

9.8.2. DrJ TERs provide an assessment of only those attributes specifically addressed in the Products Evaluated or Code Compliance Process Evaluated sections.

9.8.3. The engineering evaluation was performed on the dates provided in this TER, within DrJ's professional scope of work.

9.8.4. This product is manufactured under a third-party quality control program in accordance with IRC Section R104.4 and R109.2 and IBC Section 104.4 and 110.4.

9.8.5. The actual design, suitability and use of this TER, for any particular building, is the responsibility of the Owner or the Owner's authorized agent, and the TER shall be reviewed for code compliance by the Building Official.

9.8.6. The use of this TER is dependent on the manufacturer’s in-plant QC, the ISO/IEC 17020 third-party quality assurance program and procedures, proper installation per the manufacturer's instructions, the Building Official's inspection and any other code requirements that may apply to demonstrate and verify compliance with the applicable building code.

10. Identification:

10.1. Lamco LFL® described in this TER is identified by a label on the board or packaging material bearing the manufacturer's name, product name, TER number, and other information to confirm code compliance.

10.2. Where intended for use in fire-resistive construction, the designation “HRA” shall be included on the product marking.

10.3. Additional technical information can be found at www.lamcoewp.com.

11. Review Schedule:

11.1. This TER is subject to periodic review and revision. For the most recent version of this TER, visit drjcertification.org.

11.2. For information on the current status of this TER, contact DrJ Certification.