1. Products Evaluated:

1.1. Thermo-Brace® Blue-24 Structural Sheathing

1.1. For the most recent version of this Technical Evaluation Report (TER), visit drjengineering.org. For more detailed state professional engineering and code compliance legal requirements and references, visit drjengineering.org/statelaw. DrJ is fully compliant with all state professional engineering and code compliance laws.

1.2. This TER can be used to obtain product approval in any country that is an IAF MLA Signatory (all countries found here) and covered by an IAF MLA Evaluation per the Purpose of the MLA (e.g., see letter to ANSI from the Standards Council of Canada). Manufacturers can go to jurisdictions in the U.S., Canada and other IAF MLA Signatory Countries and have their products readily approved by authorities having jurisdiction using DrJ’s ANSI accreditation.
1.3. Building code regulations require that evaluation reports are provided by an approved agency meeting specific requirements, such as those found in ICC Section 1703. Any agency accredited in accordance with ANSI ISO/IEC 17065 meets this requirement within ANSI’s scope of accreditation. For a list of accredited agencies, visit ANSI’s website. For more information, see drjcertification.org.

1.4. Requiring an evaluation report from a specific private company (i.e., ICC-ES, IAPMO, CCMC, DrJ, etc.) can be viewed as discriminatory and is a violation of international, federal, state, provincial and local anti-trust and free trade regulations.

1.5. DrJ’s code compliance work:

 1.5.1. Conforms to code language adopted into law by individual states and any relevant consensus based standard such as an ANSI or ASTM standard.

 1.5.2. Complies with accepted engineering practice, all professional engineering laws and by providing an engineer’s seal DrJ takes professional responsibility for its specified scope of work.

2. Applicable Codes and Standards:¹

 2.2. 2012, 2015 and 2018 International Residential Code (IRC)

 2.4. 2014 and 2017 Florida Building Code – Building (FBC-B)

 2.5. 2014 and 2017 Florida Building Code – Residential (FBC-R)

 2.7. ASCE 7 – Minimum Design Loads for Buildings and Other Structures

 2.8. AWC Wind & Seismic – Special Design Provisions for Wind and Seismic (SDPWS)

 2.9. ASTM E72 – Standard Methods of Conduction Strength Test of Panels for Building Construction

 2.13. ASTM E564 – Standard Practice for Static Load Test for Shear Resistance of Framed Walls for Buildings

 2.15. UL 723 – Test for Surface Burning Characteristics of Building Materials

3. Performance Evaluation:

 3.1. Thermo-Brace® Blue-24 Structural Sheathing has been evaluated to determine:

 3.1.1. Structural performance under lateral load conditions (wind) for use as an alternative to the IRC Intermittent Wall Bracing provisions of IRC Section R602.10 method WSP, and the IRC Continuous Wall Bracing provisions of IRC Section R602.10.4, method CS-PF.

 3.1.2. Structural performance under lateral load conditions for wind loading for use with the IBC performance-based provisions, Section 2306.1 and 2306.3, for light-frame wood wall assemblies.

 3.1.2. Structural performance under lateral load conditions for use as an alternative to SDPWS Section 4.3 Wood-Frame Shear Walls.

¹ Unless otherwise noted, all references in this code compliant technical evaluation report (TER) are from the 2018 version of the codes and the standards referenced therein, including, but not limited to, ASCE 7, SDPWS and WFCM. This product also complies with the 2000-2015 versions of the IBC and IRC and the standards referenced therein. As required by law, where this TER is not approved, the building official shall respond in writing, stating the reasons this TER was not approved. For variations in state and local codes, if any see Section 8.
3.1.3. Resistance to transverse loads for wall assemblies used in light-frame wood construction in accordance with *IRC Section R301.2.1* and *IBC Section 1609.1.1*.

3.1.4. Performance for use as a water-resistive barrier (WRB) in accordance with *IRC Section R703.2* and *IBC Section 1404.2*.

3.1.5. Performance for use as an air barrier in accordance with *IRC Section N1102.4.1.1*, and *IECC Section R402.4.1.1* and *IECC Section C402.5.1.1*.

3.1.6. Performance for use as a draftstop in accordance with *IRC Section 302.12*, and *IBC Section 708.4.2, 718.3* and *718.4*.

3.1.7. Surface burn characteristics in accordance with *IBC Section 2603.3*.

3.2. Use of Thermo-Brace® Blue-24 Structural Sheathing in a portal frame with hold-down (PFH) is outside the scope of this TER.

3.2. Use of Thermo-Brace® Blue-24 Structural Sheathing in a fire resistance rated assembly is outside the scope of this TER.

3.3. Any code compliance issues not specifically addressed in this section are outside the scope of this TER.

4. Product Description and Materials:

![Thermo-Brace® Blue-24 Structural Sheathing](image)

Figure 1: Thermo-Brace® Blue-24 Structural Sheathing

4.1. Thermo-Brace® Blue-24 Structural Sheathing is composed of pressure laminated plies consisting of high-strength cellulosic fibers. These fibers are specially treated to be water resistant and are bonded with a proprietary water-resistive adhesive. A protective polymer layer is applied on both sides of the panel, and foil facings may be additionally applied on one or both faces.

4.1.1. Thermo-Brace® Blue-24 Structural Sheathing panels have a nominal thickness of 0.095" and nominal weight of 0.348 lbs. per square foot.

4.2. Material Availability

4.2.1. Standard widths include 48" (1219 mm) and 48 3/4" (1238 mm).

4.2.2. Standard lengths include 96" (2438 mm), 108" (2743 mm) and 120" (3048 mm).

4.2.3. Other custom widths and lengths can be manufactured.

5. Applications:

5.1. General

5.1.1. Thermo-Brace® Blue-24 Structural Sheathing panels are used in the following applications as:

5.1.1.1. Wall sheathing in buildings constructed in accordance with the *IRC* and *IBC* for light-frame wood construction.

2012 IECC Section C402.4.1.1
5.1.1.2. Structural wall sheathing to provide lateral load resistance (wind) for braced wall panels used in light-frame wood construction.

5.1.1.3. Wall sheathing in buildings constructed in accordance with the IBC requirements for Type V light-frame construction.

5.1.1.4. Structural wall sheathing to provide resistance to transverse loads for wall assemblies used in light-frame wood construction.

5.2. Structural Applications

5.2.1. General Structural Provisions

5.2.1.1. Except as otherwise described in this TER, Thermo-Brace® Blue-24 Structural Sheathing shall be installed in accordance with the applicable building codes listed in Section 2 using the provisions set forth therein for the design and installation of wood structural panels (WSP).

5.2.1.1.1. Thermo-Brace® Blue-24 Structural Sheathing is permitted to be designed in accordance with SDPWS for the design of shear walls using the methods set forth therein, including the perforated shear wall methodology, and subject to the SDPWS boundary conditions, except as specifically allowed in this TER.

5.2.1.2. Anchorage for in-plane shear shall be provided to transfer the induced shear force into and out of each shear wall. Shear wall anchorage shall be in accordance with the applicable code referenced in Section 2.

5.2.1.3. Except as provided for in Section 5.2.2 the maximum aspect ratio for Thermo-Brace® Blue-24 Structural Sheathing shall be 4:1.

5.2.1.4. The minimum full height panel width shall be 24" except as allowed by Section 5.2.2.

5.2.1.5. Installation is permitted for single top plate or double top plate applications.

5.2.1.6. Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience, and technical judgment.

5.2.2. Prescriptive IRC Bracing Applications

5.2.2.1. Thermo-Brace® Blue-24 Structural Sheathing may be used on braced wall lines as an equivalent alternative to Method WSP of the IRC, when installed in accordance with IRC Section R602.10 and this TER.

5.2.2.2. For wind design, required braced wall panel lengths for Thermo-Brace® Blue-24 Structural Sheathing shall be as shown in Table 1, and shall be used in conjunction with IRC Table R602.10.3(2)\(^3\), which provides the required adjustments.

5.2.2.3. Use of Thermo-Brace® Blue-24 with Method CS-PF is also permitted, in lieu of WSP specified in accordance with IRC Section R602.10.6.4.

5.2.2.4. Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience and technical judgment.

\(^3\) 2009 IRC Table R602.10.1.2(1) including all footnotes
Technical Evaluation Report (TER)

Required Bracing Lengths for Thermo-Brace® Blue-24 Structural Sheathing Installed with ½” Gypsum Wallboard @ 24” o.c. Stud Spacing (2x4 or 2x6 Studs) – Wind

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bracket Wall Line Spacing</th>
<th>Intermittent Sheathing</th>
<th>Continuous Sheathing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nails or Staples 3” o.c. Edges & in the Field</td>
<td>Nails or Staples 3” o.c. Edges & in the Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length of Wall Line to be Braced (ft.)</td>
<td>Length of Wall Line to be Braced (ft.)</td>
<td></td>
</tr>
<tr>
<td>One Story or the Top of Two or Three Stories</td>
<td>≤ 110 mph</td>
<td>≤ 115 mph</td>
<td>≤ 120 mph</td>
</tr>
<tr>
<td>10</td>
<td>2.1</td>
<td>2.1</td>
<td>2.7</td>
</tr>
<tr>
<td>20</td>
<td>3.7</td>
<td>3.7</td>
<td>4.3</td>
</tr>
<tr>
<td>30</td>
<td>5.4</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td>40</td>
<td>7.0</td>
<td>7.5</td>
<td>8.6</td>
</tr>
<tr>
<td>50</td>
<td>8.6</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>60</td>
<td>10.2</td>
<td>11.2</td>
<td>12.3</td>
</tr>
<tr>
<td>First Story of Two Stories or Second Story of Three Stories</td>
<td>≤ 110 mph</td>
<td>≤ 115 mph</td>
<td>≤ 120 mph</td>
</tr>
<tr>
<td>10</td>
<td>3.7</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>20</td>
<td>7.0</td>
<td>8.0</td>
<td>8.6</td>
</tr>
<tr>
<td>30</td>
<td>10.2</td>
<td>11.2</td>
<td>12.3</td>
</tr>
<tr>
<td>40</td>
<td>13.4</td>
<td>14.4</td>
<td>16.1</td>
</tr>
<tr>
<td>50</td>
<td>16.6</td>
<td>17.7</td>
<td>19.3</td>
</tr>
<tr>
<td>60</td>
<td>19.3</td>
<td>21.4</td>
<td>23.0</td>
</tr>
<tr>
<td>First Story of Three Stories</td>
<td>≤ 110 mph</td>
<td>≤ 115 mph</td>
<td>≤ 120 mph</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
<td>6.4</td>
<td>7.0</td>
</tr>
<tr>
<td>20</td>
<td>10.7</td>
<td>11.8</td>
<td>12.3</td>
</tr>
<tr>
<td>30</td>
<td>15.0</td>
<td>16.6</td>
<td>18.2</td>
</tr>
<tr>
<td>40</td>
<td>19.8</td>
<td>21.4</td>
<td>23.5</td>
</tr>
<tr>
<td>50</td>
<td>24.1</td>
<td>26.2</td>
<td>28.9</td>
</tr>
<tr>
<td>60</td>
<td>28.4</td>
<td>31.0</td>
<td>34.2</td>
</tr>
</tbody>
</table>

1. Demonstrates equivalency to IRC Table R602.10.3(1). All adjustment factors from IRC Table R602.10.3(2) shall be applied. Except when used with method CS-PF, a minimum of ½” gypsum sheathing shall be applied to the interior side of the wall assembly and fastened with a minimum 5d cooler nails or 1⅛” #6 types W or S screws spaced 8” o.c. at panel edges and 8” o.c. in the field of the panels.
2. Demonstrates equivalency to 2009 IRC Table R602.10.1(2)(1). All adjustment factors from IRC Table R602.10.1(2) shall be applied. Except when used with method CS-PF, a minimum of ½” gypsum sheathing shall be applied to the interior side of the wall assembly and fastened with a minimum 5d cooler nails or 1⅛” #6 types W or S screws spaced 8” o.c. at panel edges and 8” o.c. in the field of the panels.
3. Thermo-Brace® Blue-24 shall be installed with minimum 1” crown x 1⅛” leg 16 gauge galvanized staple. Joints may be butted or lapped.
4. Where gypsum wallboard is not applied to the interior side of the wall assembly, the responsibility for which is the manufacturer of those products or the members of the associations that publish those design values is determined by the equivalency factor shown in Table 2 and IRC Table R602.10.3(1-4) including all applicable factors in Table 2.
5. Bracing lengths are the results of comparative equivalency testing and analysis using both tested and published design values as points of comparison. DrJ relies upon the design values published in the codes and standards listed in Section 2 that are adopted into law and that the manufacturers of those products stand behind. DrJ performs all equivalency analysis based on legally defined design values, the responsibility for which is the manufacturer of those products or the members of the associations that publish those design values.

Table 1: Required Bracing Lengths for Thermo-Brace® Blue-24 Structural Sheathing in Accordance with the IRC Wind Bracing Provisions

5.2.2.5. Required braced wall panel lengths for Thermo-Brace® Blue-24 Structural Sheathing shall be as determined by the equivalency factor shown in Table 2 and IRC Table R602.10.3(1-4) including all footnotes.

5.2.2.5.1. The braced wall line length equivalency factors in Table 2 are based on equivalency testing and are used to comply with Method WSP and Method CS-WSP of the IRC.

5.2.2.5.2. Thermo-Brace® Blue-24 Structural Sheathing tested equivalency factors in Table 2 allow the user to determine the length of bracing required, by multiplying the factor from Table 2 by the length shown in the WSP or CS columns in IRC Table R602.10.3(1 and 3), as modified by all applicable factors in Table R602.10.3(2 and 4), respectively.

5.2.2.6. All IRC prescriptive bracing minimums, spacing requirements and rules must still be met.

4 2009 IRC Table R602.10.1.2(1) and R602.10.1.2(2)

TER No. 1507-09
Thermo-Brace® Blue-24 Structural Sheathing
Copyright © 2019
Page 5 of 14
5.2.2.7. Where a building, or portion thereof, does not comply with one or more of the bracing requirements within the prescriptive section of the IRC, those portions shall be designed and constructed in accordance with IRC Section R301.1.

Wall Bracing Factors

<table>
<thead>
<tr>
<th>Wall Bracing Factors</th>
<th>Maximum Stud Spacing (in.)</th>
<th>Fastener</th>
<th>Fastener Spacing (edge/field)</th>
<th>Interior Sheathing</th>
<th>GWB Fastening</th>
<th>SPF Framing with Thermo-Brace® Blue-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24 Structural Sheathing</td>
<td>24” o.c.</td>
<td>16 gauge, 1” crown x 1½” leg galvanized staple</td>
<td>3/3</td>
<td>½” GWB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4:16</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:8</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:16</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:16</td>
<td>1.30</td>
</tr>
</tbody>
</table>

1. Staples shall be a minimum 16 gauge.
2. Thermo-Brace® Blue-24 Structural Sheathing tested equivalency factors allow the user to determine the length of bracing required, by multiplying the factor by the length of bracing shown in the WSP or CS columns in IRC Table R602.10.3(1 and 3), as modified by all applicable factors in IRC Table R602.10.3(2 and 4) respectively.
3. Where gypsum wallboard is not applied to the interior side of the wall assembly, bracing lengths in IRC Table R602.10.3(1 and 3), as modified by all applicable factors in IRC Table R602.10.3(2 and 4), shall be used, except the factor for omitting the gypsum wallboard shall be 1.8 for gypsum fastened 8:8.
4. Valid for single top plate (advanced framing method) wall installations or double top plate wall installations.
5. Gypsum wallboard shall be installed according to the provisions listed in IRC Table R702.3.5.

Table 2: Thermo-Brace® Blue-24 Structural Sheathing Braced Wall Line Length Equivalency Factors Based on Equivalency Testing for Use with the IRC - Wind

5.2.3. Thermo-Brace® Blue-24 CS-PF Portal Frame

5.2.3.1. A “Thermo-Brace® Blue-24 Structural Sheathing CS-PF” was evaluated for equivalency to the IRC Method CS-PF (Continuous Sheathed Portal Frame) in accordance with IRC Section R602.10.6.4 and Table R602.10.5.

5.2.3.2. Table R602.10.5 establishes the contributing length bracing of the CS-PF as equivalent to 1.5 times its actual length and that it contributes this length of bracing to that required by method CS-WSP.

5.2.3.3. The capacity of the Thermo-Brace® Blue-24 Structural Sheathing CS-PF exceeds the capacity of the IRC Method CS-WSP and is therefore permitted to be substituted for an equivalent length of bracing (i.e., 1.5 times its actual length).

5.2.3.4. The Thermo-Brace® Blue-24 Structural Sheathing CS-PF is described as follows:
5.2.4. Prescriptive IBC Conventional Light-Frame Wood Construction

5.2.4.1. Thermo-Brace® Blue-24 Structural Sheathing may be used to brace exterior walls of buildings as an equivalent alternative to Method 3 of the IBC when installed with blocked or unblocked ½” gypsum fastened with a minimum 5d cooler nail or #6 type W or S screw spaced a maximum of 16” o.c. at panel edges and 16” o.c. in the field. Bracing shall be in accordance with the conventional light-frame construction method of IBC Section 2308.6 5 and this TER.

5.2.5. Performance-Based Wood-Framed Construction

5.2.5.1. Thermo-Brace® Blue-24 Structural Sheathing panels used in wall assemblies designed as shear walls are permitted to be designed in accordance with the methodology used in SDPWS for WSP using the capacities shown in Table 3 and Table 4.

5.2.5.2. Thermo-Brace® Blue-24 Structural Sheathing shear walls are permitted to resist horizontal wind load forces using the allowable shear loads (in pounds per linear foot) set forth in Table 3.

5.2.5.3. Thermo-Brace® Blue-24 Structural Sheathing panels are permitted to resist transverse wind load forces using the allowable transverse loads (in pounds per linear foot) set forth in Table 4.

5 IBC Section 2308.9.3
Chapter 5: Perforated Shear Walls

5.3.1. Thermo-Brace® Blue-24 Structural Sheathing is permitted to be designed in accordance with the methodology found in SDPWS Section 4.3.3.5 with the following exceptions:

5.3.1.1. SDPWS Equation 4.3-5 for \(C_o \) shall be replaced with the equation from Table 5.

<table>
<thead>
<tr>
<th>Wall Assembly</th>
<th>Replace SDPWS Eq. 4.3-5 with the Following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24 (0.135")</td>
<td>(C_o = \frac{r}{(2-r)} \times \frac{L_{tot}}{L_i})</td>
</tr>
</tbody>
</table>

Table 5: \(C_o \) for Use with SDPWS Perforated Shear Wall Methodology

5.3.1.2. Figure 3 shows how to calculate the capacity of a perforated shear wall with Thermo-Brace® Blue-24 Structural Sheathing using Table 5.
Figure 3: Example of a Perforated Shear Wall

1. The total length of the perforated shear wall, L_{tot}, is 30'.
2. The height of the perforated shear wall, h, is 8'.
3. The sum of the perforated shear wall segment lengths, ΣL_i, is 10'.
4. The total area of the openings, A_o, is:
 4.1. Two (2) 7' x 6' 6" openings – 45.5 sq. ft. x 2 = 91 sq. ft.
 4.2. Two (2) 3' x 3' 6" openings – 10.5 sq. ft. x 2 = 21 sq. ft.
 4.3. Total opening area is: 91 + 21 = 112 sq. ft.
5. Using SDPWS Equation 4.3-6, the sheathing area ratio, r, is:

$$r = \frac{1}{1 + \frac{A_o}{h\Sigma L_i}} = \frac{1}{1 + \frac{112}{8*10}} = 0.417$$

6. Using Table 5, the shear capacity adjustment factor, C_o, is:

$$C_o = \frac{r}{2 - r} \cdot \frac{L_{tot}}{\Sigma L_i} = \frac{0.417}{2 - 0.417} \cdot \frac{30}{10} = .790$$

7. From Table 3, the allowable unit shear capacity, v, is: 230 plf.
8. In accordance with SDPWS Section 4.3.3.5, the total ASD shear capacity of this perforated shear wall, $V_{perforated}$, is:

$$V_{perforated} = v \cdot \Sigma L_i \cdot C_o = 230 \text{ plf} \cdot 10 \text{ ft} \cdot .790 = 1817 \text{ lbs.}$$

5.4. Fire Resistance Properties

5.4.1. Surface Burn Characteristics

5.4.1.1. Thermo-Brace® Blue-24 Structural Sheathing panels have the flame spread characteristics shown in Table 6.

<p>| Flame Spread & Smoke Developed Indexes of Thermo-Brace® Blue-24 Structural Sheathing |
|---------------------------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Thermo-Brace® Blue-24 Structural Sheathing</th>
<th>Flame Spread</th>
<th>Smoke Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td></td>
<td>< 450</td>
</tr>
</tbody>
</table>

1. Tested in accordance with ASTM E84 and UL 723.

Table 6: Flame Spread & Smoke Developed Indexes of Thermo-Brace® Blue-24 Structural Sheathing
5.5. **Water-Resistive Barrier**

5.5.1. Thermo-Brace® Blue-24 Structural Sheathing may be used as a WRB as prescribed in *IRC Section R703.2* and *IBC Section 1404.2*, when installed on exterior walls as described in this section.

5.5.2. Thermo-Brace® Blue-24 Structural Sheathing shall be installed with board joints placed directly over exterior framing spaced a maximum of 24" (610 mm) o.c. The fasteners used to attach the board shall be installed in accordance with Section 6.

5.5.3. Where seams and joints between boards are overlapped nominally ¾" (19 mm) and fastened in accordance with Section 6, seam tape is not required for approval as a WRB.

5.5.4. Where seams and joints between boards are butt jointed, they shall be sealed with Barricade® Seam Tape or equivalent in accordance with Section 6.

5.5.5. A separate WRB system may also be provided. If a separate WRB system is used, taping of the sheathing joints is not required.

5.5.6. Flashing must be installed at all sheathing penetrations and shall comply with all applicable code sections.

5.6. **Air Barrier**

5.6.1. Thermo-Brace® Blue-24 Structural Sheathing may be used as an air barrier material as prescribed in *IRC Section N1102.4.1.1*, and *IECC Section R402.4.1.1 and C402.5.1* in accordance with ASTM E2178.

5.7. **Draftstop**

5.7.1. Thermo-Brace® Blue-24 Structural Sheathing may be used as a draftstop material in accordance with *IRC Section 302.12*, and *IBC Section 708.4.2, 718.3 and 718.4*.

5.7.2. When installed as of a draftstop, Thermo-Brace® Blue-24 Structural Sheathing shall be installed in accordance with Section 6.

5.8. **Non-Structural Applications**

5.8.1. Where other means of wall bracing are provided, or are not required, any grade of Thermo-Brace® Structural Sheathing may be used to provide other approved wall functions, when installed in accordance with this section.

5.8.1.1. The sheathing panels are applied to wall framing with 16 ga. galvanized staples having a 1" crown and 1 1/4" leg lengths.

5.8.1.2. Fastener spacing shall be a maximum of 6" o.c in the field and 3" o.c. around the perimeter.

5.8.1.3. Stud spacing shall be a maximum of 24" o.c.

5.8.1.4. Minimum fastener penetration into the framing members is 1".

5.8.1.5. Fasten all staples parallel to the framing member, with an edge spacing of 3/8" (9.5 mm) minimum.

5.8.1.6. All panels are vertically or horizontally installed with all joints backed by studs, plates or blocks when water or air barrier functionality is desired.

5.8.1.7. When used as a WRB, joints shall overlap nominally ¾" (19.1 mm), or be butted and covered with Barricade® Seam Tape or equivalent. Overlapped joints are not required to the covered with Barricade® Seam Tape.

6. **Installation:**

6.1. **General for Structural and WRB Applications**

6.1.1. Thermo-Brace® Blue-24 Structural Sheathing shall be installed in accordance with the manufacturer’s published installation instructions and this TER. Basic instructions are printed on every Thermo-Brace® pallet or insert.
6.1.2. Installation shall comply with the manufacturer’s installation instructions and this TER. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

6.2. Orientation

6.2.1. Thermo-Brace® Blue-24 Structural Sheathing shall be installed in either the vertical or horizontal orientation. To be recognized for the structural values listed in this TER, or as a water barrier, all joints must be backed by studs, plates, or blocks and fastened.

6.3. Fastener Type

6.3.1. Thermo-Brace® Blue Structural Sheathing

6.3.1.1. Minimum 1” crown by 1¼” leg, 16 ga galvanized staples shall be installed per the staple manufacturer’s instructions.

6.3.1.2. Fasteners shall be driven such that the crown of the fastener is in contact with the surface of the Thermo-Brace® Structural Sheathing. Do not overdrive fasteners.

6.3.2. Gypsum Wallboard

6.3.2.1. Where required, gypsum wallboard shall be a minimum ½” thickness and shall be attached with one of the following.

 6.3.2.1.1. #6 x 1¼” Type W or S screws
 6.3.2.1.2. 5d cooler nails

6.4. Fastener Edge Distance

6.4.1. Fasteners shall be installed with a nominal edge distance of ¾” (9.5 mm) for Thermo-Brace® Blue-24 Structural Sheathing and gypsum.

6.5. Treatment of Joints

6.5.1. Thermo-Brace® Blue-24 Structural Sheathing joints may be either butted or overlapped.

 6.5.1.1. Lapped joints shall be overlapped by nominally ¾” (19.1 mm) and fastened with a single row of fasteners. Always run staples parallel with framing. Overlapped joints do not require Barricade® Seam Tape.

 6.5.1.2. Butt joints shall be placed over framing members and fastened with a single row of fasteners at each panel edge. Seal butted seams with Barricade® Seam Tape or equivalent when finished with attaching the wall panels and all fasteners in the wall line.

6.5.2. Thermo-Brace® Blue-24 Structural Sheathing must be installed with appropriate flashing and counter flashing, in conformance with accepted building standards and in compliance with local building codes and the flashing manufacturer’s installation instructions.

7. Test and Engineering Substantiating Data:

7.1. Lateral load testing in accordance with ASTM E564, performed by SBCRI under contract with Qualtim.

7.2. Transverse load testing in accordance with ASTM E330, performed by SBCRI.

7.3. Test reports and data for determining use as a water-resistive barrier material in accordance with ASTM E331, performed by Intertek.

7.4. Test reports and data for determining use as an air barrier in accordance with ASTM E2178, performed by Intertek.

7.5. Flame spread and smoke developed ratings in accordance with ASTM E84, performed by Intertek.

7.6. Test reports and data for determining comparative equivalency for use as an alternative material in accordance with IRC Section R104.11 and IBC Section 104.11.

7.7. The product(s) evaluated by this TER fall within the scope of one or more of the model, state or local building codes for building construction. The testing and/or substantiating data used in this TER is limited to buildings, structures, building elements, construction materials and civil engineering related specifically to buildings.
7.8. The provisions of model, state or local building codes for building construction do not intend to prevent the installation of any material or to prohibit any design or method of construction. Alternatives shall use consensus standards, performance-based design methods or other engineering mechanics based means of compliance. This TER assesses compliance with defined standards, accepted engineering analysis, performance-based design methods, etc. in the context of the pertinent building code requirements.

7.9. Some information contained herein is the result of testing and/or data analysis by other sources, which DrJ relies on to be accurate, as it undertakes its engineering analysis.

7.10. DrJ has reviewed and found the data provided by other professional sources are credible. The information in this TER conforms with DrJ’s procedure for acceptance of data from approved sources.

7.11. DrJ’s responsibility for data provided by approved sources conforms with IBC Section 1703 and any relevant professional engineering law.

7.12. Where appropriate, DrJ relies on the derivation of design values, which have been codified into law through codes and standards (e.g., IRC, WFCM, IBC, SDFWS, NDS, ACI, AISI, PS-20, PS-2, etc.). This includes review of code provisions and any related test data that aids in comparative analysis or provides support for equivalency to an intended end-use application. Where the accuracy of design values provided herein is reliant upon the published properties of commodity materials (e.g., lumber, steel, concrete, etc.), DrJ relies upon grade/properties provided by the raw material supplier to be accurate and conforming to the mechanical properties defined in the relevant material standard.

8. Findings:

8.1. When installed in accordance with the manufacturer’s installation instructions and this TER, Thermo-Brace® Blue-24 Structural Sheathing complies with, or is a suitable alternative to, the applicable sections of the codes listed in Section 2 for the following applications:

8.1.1. Lateral load resistance due to wind loads carried by shear walls.

8.1.2. Transverse load resistance due to components and cladding pressures on building surfaces.

8.1.3. Performance for use as a WRB in accordance with IRC Section R703.2 and IBC Section 1404.2.

8.1.4. Performance for use as an air barrier material in accordance with IRC Section N1102.4.1.1, and IECC Section R402.4.1.1 and IECC Section C402.5.1.17.

8.1.5. Performance for use as a draftstop in accordance with IRC Section 302.12, and IBC Section 708.4.2, 718.3 and 718.4.

8.1.6. Surface burn characteristics in accordance IBC Section 2603.3.

8.2. IBC Section 104.11 and IRC Section R104.11 (IFC Section 104.9 is similar) state:

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code. … Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons the alternative was not approved.

8.3. This product has been evaluated in the context of the codes listed in Section 2, and is compliant with all known state and local building codes. Where there are known variations in state or local codes that are applicable to this evaluation, they are listed here:

8.3.1. No known variations

8.4. This TER uses professional engineering law, the building code, ANSI/ASTM consensus standards and generally accepted engineering practice as its criteria for all testing and engineering analysis. DrJ’s professional engineering work falls under the jurisdiction of each state Board of Professional Engineers, when signed and sealed.

7 2012 IECC Section 402.4.1.1
9. Conditions of Use:

9.1. Where required by the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

9.2. Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the code official for review and approval.

9.3. Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed and/or by the Building Designer (e.g., Owner, Registered Design Professional, etc.).

9.4. This TER and the installation instructions shall be available to the jurisdiction in which the project is to be constructed.

9.5. Thermo-Brace® Blue-24 Structural Sheathing shall not be used as a nailing base for claddings, trim, windows and doors. Fastening through the Thermo-Brace® Blue-24 Structural Sheathing into the framing is acceptable.

9.6. Walls sheathed with Thermo-Brace® Blue-24 Structural Sheathing shall not be used to resist horizontal loads from concrete and masonry walls.

9.7. When Thermo-Brace® Blue-24 Structural Sheathing is installed as a wall sheathing but is not installed per structural requirements, light-framed walls shall be braced by other means. When used as a WRB, installation shall be in accordance with Section 5.5.

9.7.1. When Thermo-Brace® Structural Sheathing is not installed as a WRB, other means of providing a WRB shall be required, as per the code.

9.8. When used in accordance with the IBC in Seismic Design Categories C, D, E or F, special inspections shall comply with IBC Section 1705.12.

9.9. When used in accordance with the IBC in high wind areas, special inspections shall comply with IBC Section 1705.11.

9.10. Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed.

9.10.1. Allowable shear loads shall not exceed values in Table 3 for wind loads.

9.10.2. Transverse design loads shall not exceed those described in Table 4, unless an approved exterior wall covering capable of separately resisting loads perpendicular to the face of the walls is installed over the sheathing.

9.11. Thermo-Brace® Blue-24 Structural Sheathing is manufactured under a quality control program with quality control inspections in accordance with IRC Section R109.2 and IBC Section 110.3.8 and 110.4.

9.12. Design

9.12.1.1. Unless the AHJ allows otherwise, the Construction Documents shall be prepared by a Building Designer for the Building and shall be in accordance with IRC Section R106 and IBC Section 107.

9.12.1.2. The Construction Documents shall be accurate and reliable and shall provide the location, direction and magnitude of all applied loads and shall be in accordance with IRC Section R301 and IBC Section 1603.

9.12.2. Construction Documents

9.12.2.1. Construction Documents shall be submitted to the Building Official for approval and shall contain the plans, specifications and details needed for the Building Official to approve such documents.

2012 IBC Section 1705.11
8 2012 IBC Section 1705.10

Technical Evaluation Report (TER)

9.13. Responsibilities

9.13.1. The information contained herein is a product, material, detail, design and/or application TER evaluated in accordance with the referenced building codes, testing and/or analysis through the use of accepted engineering practice, experience and technical judgment.

9.13.2. DrJ TERs provide an assessment of only those attributes specifically addressed in the Products Evaluated or Code Compliance Process Evaluated sections.

9.13.3. The engineering evaluation was performed on the dates provided in this TER, within DrJ's professional scope of work.

9.13.4. This product is manufactured under a third-party quality control program in accordance with IRC Section R104.4 and R109.2, and IBC Section 104.4 and 110.4.

9.13.5. The actual design, suitability and use of this TER, for any particular building, is the responsibility of the Owner or the Owner's authorized agent, and the TER shall be reviewed for code compliance by the Building Official.

9.13.6. The use of this TER is dependent on the manufacturer’s in-plant QC, the ISO/IEC 17020 third-party quality assurance program and procedures, proper installation per the manufacturer’s instructions, the Building Official’s inspection and any other code requirements that may apply to demonstrate and verify compliance with the applicable building code.

10. Identification:

10.1. Each Thermo-Brace® Blue-24 Structural Sheathing panel described in this TER is identified by a label on the board or packaging material bearing the manufacturer's name, product name, TER number, and other information to confirm code compliance.

10.2. Additional technical information can be found at barricadebp.com.

11. Review Schedule:

11.1. This TER is subject to periodic review and revision. For the most recent version of this TER, visit drijengineering.org.

11.2. For information on the current status of this TER, contact DrJ Engineering.