Technical Evaluation Report
TER 1507-09
Thermo-Brace® Blue-24 Structural Sheathing

Barricade® Building Products

Product:
Thermo-Brace® Blue-24 Structural Sheathing

Issue Date:
February 16, 2019
Revision Date:
October 30, 2020
Subject to Renewal:
July 1, 2021
1 PRODUCT EVALUATED¹

1.1 Thermo-Brace® Blue-24 Structural Sheathing

2 APPLICABLE CODES AND STANDARDS²,³

2.1 Codes

2.1.1 IBC—12, 15, 18: International Building Code®
2.1.2 IRC—12, 15, 18: International Residential Code®
2.1.3 IECC—12, 15, 18: International Energy Conservation Code®
2.1.4 FBC-B—14, 17: Florida Building Code – Building
2.1.5 FBC-R—14, 17: Florida Building Code – Residential
2.1.6 FBC-EC—14, 17: Florida Building Code – Energy Conservation

2.2 Standards and Referenced Documents

¹ Building codes require data from valid research reports be obtained from approved sources. Agencies who are accredited through ISO/IEC 17065 have met the code requirements for approval by the building official. DrJ is an ISO/IEC 17065 ANAB-Accredited Product Certification Body – Accreditation #1131.

Through ANAB accreditation and the IAF MLA, DrJ certification can be used to obtain product approval in any jurisdiction or country that has IAF MLA Members & Signatories to meet the Purpose of the MLA – “certified once, accepted everywhere.”

Building official approval of a licensed registered design professional (RDP) is performed by verifying the RDP and/or their business entity complies with all professional engineering laws of the relevant jurisdiction. Therefore, the work of licensed RDPs is accepted by building officials, except when plan (i.e., peer) review finds an error with respect to a specific section of the code. Where this TER is not approved, the building official responds in writing stating the reasons for disapproval.

For more information on any of these topics or our mission, product evaluation policies, product approval process, and engineering law, visit drjcertification.org or call us at 608-310-6748.

² Unless otherwise noted, all references in this TER are from the 2018 version of the codes and the standards referenced therein (e.g., ASCE 7, NDS, ASTM). This material, design, or method of construction also complies with the 2000-2015 versions of the referenced codes and the standards referenced therein.

³ All terms defined in the applicable building codes are italicized.
2.2.1 ANSI/AWC SDPWS: Special Design Provisions for Wind and Seismic
2.2.2 ASCE/SEI 7: Minimum Design Loads and Associated Criteria for Buildings and Other Structures
2.2.3 ASTM E2178: Standard Test Method for Air Permeance of Building Materials
2.2.4 ASTM E330: Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure
2.2.5 ASTM E331: Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference
2.2.6 ASTM E564: Standard Practice for Static Load Test for Shear Resistance of Framed Walls for Buildings
2.2.7 ASTM E72: Standard Test Methods of Conducting Strength Tests of Panels for Building Construction
2.2.8 ASTM E84: Standard Test Method for Surface Burning Characteristics of Building Materials
2.2.9 UL 723: Test for Surface Burning Characteristics of Building Materials

3 PERFORMANCE EVALUATION

3.1 Thermo-Brace® Blue-24 Structural Sheathing has been evaluated to determine:

3.1.1 Structural performance under lateral load conditions (wind) for use as an alternative to the IRC intermittent wall bracing provisions of IRC Section R602.10 Method WSP (wood structural panel) and the IRC continuous wall bracing provisions of IRC Section R602.10.4 Methods CS-WSP (continuously sheathed wood structural panel) and CS-PF (continuously sheathed portal frame).

3.1.2 Structural performance under lateral load conditions for wind loading for use with the IBC performance based provisions, Section 2306.1 and Section 2306.3, for light-frame wood wall assemblies.

3.1.3 Structural performance under lateral load conditions for use as an alternative to SDPWS Section 4.3 Wood-Frame Shear Walls.

3.1.4 Resistance to transverse loads for wall assemblies used in light-frame wood construction in accordance with IBC Section 1609.1.1 and IRC Section R301.2.1.

3.1.5 Performance for use as a water-resistive barrier (WRB) in accordance with IBC Section 1403.24 and IRC Section R703.2.

3.1.6 Performance for use as an air barrier in accordance with IRC Section N1102.4.1.1, and IECC Section R402.4.1.1 and IECC Section C402.5.1.1\(^\text{5}\).

3.1.7 Performance for use as a draftstop in accordance with IBC Section 708.4.2, Section 718.3, and Section 718.4 and IRC Section 302.12.

3.1.8 Surface burn characteristics in accordance with IBC Section 2603.3.

3.2 Use of Thermo-Brace® Blue-24 Structural Sheathing in a portal frame with hold-down (PFH) is outside the scope of this TER.

3.3 Use of Thermo-Brace® Blue-24 Structural Sheathing in a fire resistance rated assembly is outside the scope of this TER.

3.4 Any code compliance issues not specifically addressed in this section are outside the scope of this TER.

3.5 Any engineering evaluation conducted for this TER was performed on the dates provided in this TER and within DrJ's professional scope of work.

\(^4\) 2015 IBC Section 1403.24
\(^5\) 2012 IECC Section C402.4.1.1
4 PRODUCT DESCRIPTION AND MATERIALS

4.1 The product evaluated in this TER is shown in Figure 1.

![Barricade Thermo-Brace® Blue-24 Structural Sheathing]

FIGURE 1. Thermo-Brace® Blue-24 Structural Sheathing

4.2 Thermo-Brace® Blue-24 Structural Sheathing is composed of pressure laminated plies consisting of high-strength cellulosic fibers. These fibers are specially treated to be water resistant and are bonded with a proprietary water-resistive adhesive. A protective polymer layer is applied on both sides of the panel, and foil facings may be additionally applied on one or both faces.

4.2.1 Thermo-Brace® Blue-24 Structural Sheathing panels have a nominal weight of 0.348 lbs. per square foot.

4.3 Material Availability

4.3.1 Thickness: 0.095" (2.4 mm)

4.3.2 Standard product widths: 48" (1219 mm) and 48¾" (1238 mm)

4.3.3 Standard lengths include 96" (2438 mm), 108" (2743 mm), and 120" (3048 mm)

4.3.4 Other custom widths and lengths can be manufactured.

5 APPLICATIONS

5.1 Thermo-Brace® Blue-24 Structural Sheathing panels are used in the following applications:

5.1.1 Wall sheathing in buildings constructed in accordance with *IBC* and *IRC* provisions for light-frame wood construction.

5.1.2 Structural wall sheathing to provide lateral load resistance (wind) for braced wall panels used in light-frame wood construction.

5.1.3 Wall sheathing in buildings constructed in accordance with the *IBC* requirements for Type V light frame construction.

5.1.4 Structural wall sheathing to provide resistance to transverse loads for wall assemblies used in light frame wood construction.

5.2 Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience, and technical judgment.

5.3 Structural Applications

5.3.1 General Structural Provisions:

5.3.1.1 Except as otherwise described in this TER, Thermo-Brace® Blue-24 Structural Sheathing shall be installed in accordance with the applicable building codes listed in Section 2 using the provisions set forth therein for the design and installation of wood structural panels (WSP).

5.3.1.1.1 Thermo-Brace® Blue-24 Structural Sheathing is permitted to be used for the design of shear walls in accordance with *SDPWS* using the methods set forth therein, including the perforated shear wall methodology, and subject to the *SDPWS* boundary conditions, except as specifically allowed in this TER.

5.3.1.2 Anchorage for in-plane shear shall be provided to transfer the induced shear force into and out of each shear wall. Shear wall anchorage shall be in accordance with the applicable code referenced in Section 2.
5.3.1.3 Except as noted in Section 5.3.2, the maximum aspect ratio for Thermo-Brace® Blue-24 Structural Sheathing shall be 4:1.

5.3.1.4 Except as noted in Section 5.3.2, the minimum full height panel width shall be 24" (610 mm).

5.3.1.5 Installation is permitted for single top plate or double top plate applications.

5.3.1.6 Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience, and technical judgment.

5.3.2 Prescriptive IRC Bracing Applications:

5.3.2.1 Thermo-Brace® Blue-24 Structural Sheathing may be used on braced wall lines as an equivalent alternative to IRC Method WSP when installed in accordance with IRC Section R602.10 and this TER.

5.3.2.2 For wind design, required braced wall panel lengths for Thermo-Brace® Blue-24 Structural Sheathing shall be as shown in Table 1 and shall be used in conjunction with IRC Table R602.10.3(2), which provides the required adjustments.

5.3.2.3 Use of Thermo-Brace® Blue-24 with Method CS-PF is also permitted in accordance with Section 5.3.3 per IRC Section R602.10.6.4.

5.3.2.4 Where the application exceeds the limitations set forth herein, design shall be permitted in accordance with accepted engineering procedures, experience, and technical judgment.
TABLE 1. REQUIRED BRACING LENGTHS FOR THERMO-BRACE® BLUE-24 (STUDS 24" O.C.) – WIND

<table>
<thead>
<tr>
<th>Condition</th>
<th>Braced Wall Line Spacing (ft)</th>
<th>Minimum Total Length (ft) of Braced Wall Panels Required Along Each Braced Wall Line</th>
<th>Continuous Sheathing 1</th>
<th>Ultimate Design Wind Speed, V_{ad} (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intermittent Sheathing 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Story or the Top of Two or Three Stories</td>
<td>10</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.4</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7.0</td>
<td>7.5</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>8.6</td>
<td>9.6</td>
<td>10.2</td>
</tr>
<tr>
<td>First Story of Two Stories or Second Story of Three Stories</td>
<td>10</td>
<td>3.7</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.0</td>
<td>8.0</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>10.2</td>
<td>11.2</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>13.4</td>
<td>14.4</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>16.6</td>
<td>17.7</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>19.3</td>
<td>21.4</td>
<td>23.0</td>
</tr>
<tr>
<td>First Story of Three Stories</td>
<td>10</td>
<td>5.9</td>
<td>6.4</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10.7</td>
<td>11.8</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>15.0</td>
<td>16.6</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>19.8</td>
<td>21.4</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>24.1</td>
<td>26.2</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>28.4</td>
<td>31.0</td>
<td>34.2</td>
</tr>
</tbody>
</table>

1. Thermo-BRACE® Blue-24 shall be installed on 2x4 or 2x6 studs spaced 24" o.c. and fastened with minimum 1" crown x 1½" leg 16 gauge galvanized staples spaced 3½" (edge/field) per Section 6. Joints may be butted or lapped.
2. Demonstrates equivalency to IRC Table R602.10.3(1). All adjustment factors from IRC Table R602.10.3(2) shall be applied. Except when used with method CS-PF, a minimum of ½" gypsum sheathing shall be applied to the interior side of the wall assembly and fastened with a minimum 5d cooler nails or ⅛" #6 screws spaced 8" o.c. at panel edges and 8" o.c. in the field of the panels.
3. Minimum ½" gypsum wallboard must be installed as part of the wall assembly. Where gypsum wallboard is not applied to the interior side of the wall assembly, bracing lengths shall be multiplied by a factor of 1.8.
4. Bracing lengths are the results of comparative equivalency testing and analysis using both tested and published design values as points of comparison. DrJ relies upon the design values published in the codes and standards listed in Section 2 that are adopted into law and that the manufacturers of those products stand behind. DrJ performs all equivalency analysis based on legally defined design values, the responsibility for which is the manufacturer of those products or the members of the associations that publish those design values.
5. Linear interpolation is permitted.
6. Wind speeds shown are V_{ad} in accordance with ASCE 7-16. Use the following equation to convert to equivalent V_{ead} wind speed for use with the 2012 IBC in accordance with IBC Section 1609.3.1: $V_{ead} = V_{ad} \sqrt{0.6}$

5.3.3 Thermo-BRACE® Blue-24 CS-PF Portal Frame:

1. Thermo-BRACE® Blue-24 Structural Sheathing was tested and evaluated for equivalency to the IRC Method CS-PF in accordance with IRC Section R602.10.6.4 and Table R602.10.5.

2. Table R602.10.5 establishes the contributing length bracing of the CS-PF as equivalent to 1.5 times its actual length and that it contributes this length of bracing to that required by Method CS-WSP.
5.3.3.3 The capacity of the Thermo-Brace® Blue-24 Structural Sheathing CS-PF exceeds the capacity of the IRC Method CS-WSP and is, therefore, permitted to be substituted for an equivalent length of bracing (i.e., 1.5 times its actual length).

5.3.3.4 The Thermo-Brace® Blue-24 Structural Sheathing CS-PF is shown in Figure 2.
5.3.4 Alternative to Prescriptive IRC Bracing Applications:

5.3.4.1 As an alternative to the requirements of Section 5.3.2 of this TER, the following provisions are permitted:

5.3.4.1.1 Thermo-Brace® Blue-24 Structural Sheathing may be used on braced wall lines as an equivalent alternative to the WSP method when installed in accordance with IRC Section R602.10 and this TER.

5.3.4.1.2 Thermo-Brace® Blue-24 Structural Sheathing may be used to brace the walls of buildings as an alternative to the continuous wall bracing provisions of the CS-WSP method described in IRC Section R602.10.4.

5.3.4.1.3 Required braced wall panel lengths for Thermo-Brace® Blue-24 Structural Sheathing shall be as determined by the equivalency factor shown in Table 2 and IRC Table R602.10.3(1-4) and Section R602.10.3(2), including all footnotes.

5.3.4.1.3.1 Bracing lengths in the IRC tables for the WSP or CS-WSP methods shall be multiplied by the equivalency factors listed in Table 2 below.

TABLE 2. BRACED WALL LINE LENGTH EQUIVALENCY FACTORS

<table>
<thead>
<tr>
<th>Product</th>
<th>Fastener Spacing (edge:field) (in)</th>
<th>Maximum Stud Spacing (in)</th>
<th>Gypsum Wallboard (GWB)</th>
<th>GWB Fastener Spacing (edge:field) (in)</th>
<th>Equivalency Factors(^*) to IRC WSP or CS-WSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>^{15/16} Crown x 1/4" Leg 16 ga Staple</td>
<td>3:3</td>
<td>24 o.c.</td>
<td>1/4" GWB</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4:16</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:8</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:16</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:16</td>
<td>1.30</td>
</tr>
</tbody>
</table>

\(^*\) SI: 1 in = 25.4 mm

1. Factors based on SPF framing materials.
2. Multiply the bracing lengths indicated for the WSP or CS-WSP continuous sheathing methods in IRC Table R602.10.3(1) and Section R602.10.3(3), and as modified by all applicable factors in IRC Tables R602.10.3(2) and Section R602.10.3(4), by the factors shown here to establish the required bracing length.
3. Where gypsum wallboard is not applied to the interior side of the wall assembly, bracing lengths shall be multiplied by a factor of 1.8 for gypsum fastened 8:8.
4. These equivalency factors are valid for single top plate (advanced framing method) wall installations or double top plate wall installations.
5. Gypsum wallboard shall be installed according to the provisions listed in IRC Table R702.3.5.
6. Equivalency factors are the results of comparative equivalency testing and analysis using both tested and published design values as points of comparison. DrJ relies upon the design values published in the codes and standards listed in Section 2 of this TER that are adopted into law and that the manufacturers of those products stand behind. DrJ performs all equivalency analysis based on legally defined design values, the responsibility for which belongs to the manufacturer of those products or the members of the associations that publish those design values.
5.3.4.1.3.2 The braced wall line length equivalency factors in Table 2 are based on equivalency testing and are used to comply with Method WSP and Method CS-WSP of the IRC.

5.3.4.1.3.3 The length of bracing required shall be determined by multiplying the Thermo-Brace® Blue-24 Structural Sheathing tested equivalency factors in Table 2 by the length shown in the WSP or CS-WSP methods in IRC Table R602.10.3(1 and 3), as modified by all applicable factors in Table R602.10.3(2 and 4), respectively.

5.3.4.1.4 All IRC prescriptive bracing minimums, spacing requirements, and rules must still be met.

5.3.4.1.5 Where a building, or portion thereof, does not comply with one or more of the bracing requirements within the prescriptive section of the IRC, those portions shall be designed and constructed in accordance with IRC Section R301.1.

5.3.5 Prescriptive IBC Conventional Light-Frame Wood Construction:

5.3.5.1 Thermo-Brace® Blue-24 Structural Sheathing may be used to brace exterior walls of buildings as an equivalent alternative to Method WSP of the IBC when installed with blocked or unblocked ½" gypsum fastened with a minimum 5d cooler nail or #6 type W or S screw spaced a maximum of 16" o.c. at panel edges and 16" o.c. in the field. Bracing shall be in accordance with the conventional light frame construction method of IBC Section 2308.6 and this TER.

5.3.6 Performance-Based Wood-Framed Construction:

5.3.6.1 Thermo-Brace® Blue-24 Structural Sheathing panels used in wall assemblies designed as shear walls are permitted to be designed in accordance with the methodology used in SDPWS for WSP using the capacities shown in Table 3.

5.3.6.2 Thermo-Brace® Blue-24 Structural Sheathing shear walls are permitted to resist horizontal wind load forces using the allowable shear loads (in pounds per linear foot) set forth in Table 3.

Table 3. Allowable Stress Design (ASD) Capacity – Wind

<table>
<thead>
<tr>
<th>Product</th>
<th>Joint Condition</th>
<th>Fastener</th>
<th>Fastener Spacing (edge:field) (in)</th>
<th>Maximum Stud Spacing (in)</th>
<th>Gypsum Wallboard (GWB)</th>
<th>GWB Fastener Spacing (edge:field) (in)</th>
<th>Allowable Unit Shear Capacity (plf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>Butted or Lapped</td>
<td>15/16" Crown x 1¼" Leg 16 ga Staple</td>
<td>3:3</td>
<td>24 o.c.</td>
<td>None</td>
<td>¼" GWB</td>
<td>4:16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:16</td>
</tr>
</tbody>
</table>

1. Thermo-Brace® Blue-24 fasteners shall penetrate a minimum of 1" into the stud. Fasteners are to be installed with the crown parallel to the framing and spaced a maximum of 3" o.c. at the panel edges and 3" o.c. in the field. Fastener edge distance shall be a minimum of 1/4". Fastener head shall be in contact with the Thermo-Brace® surface. Roofing nails (minimum 0.120" x 1¼" with a 3/8" head) are a permitted alternate fastener.

2. Gypsum attached with minimum #6 Type W or S screws 1¼" long or 5d cooler nails with a minimum edge distance of 1/4".

3. Straight line interpolations between fastening patterns is acceptable.

5.3.7 Transverse Wind Loading:

5.3.7.1 Thermo-Brace® Blue-24 Structural Sheathing panels are permitted to resist transverse wind load forces using the allowable transverse loads (in pounds per linear foot) set forth in Table 4 and Table 5.

6 2012 IBC Section 2308.3
TABLE 4. TRANSVERSE (OUT-OF-PLANE) WIND LOAD RESISTANCE

<table>
<thead>
<tr>
<th>Product</th>
<th>Maximum Stud Spacing (in)</th>
<th>Fastener</th>
<th>Fastener Spacing (edge:field) (in)</th>
<th>Allowable Design Value (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>24</td>
<td>19/16" crown x 1¼" leg 16 ga galvanized Staple</td>
<td>3.3</td>
<td>90</td>
</tr>
</tbody>
</table>

Sl: 1 in = 25.4 mm, 1 psf = 0.0479 kN/m²

1. The ASD allowable uniform load capacities to be used for wind design are determined by dividing the ultimate uniform load capacities by an ASD reduction factor of 1.6, per SDPWS Section 3.2.1 for determining the ASD allowable uniform load capacity.
2. Design wind load capacity shall be in accordance with IBC Section 1609.1.1.
3. Staple crowns shall be installed parallel to grain.

TABLE 5. BASIC WIND SPEED FOR USE IN EXTERIOR WALL COVERING ASSEMBLIES

<table>
<thead>
<tr>
<th>Product</th>
<th>Allowable Components & Cladding Basic Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASCE 7-05 (V_{ass})</td>
</tr>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>155</td>
</tr>
</tbody>
</table>

Sl: 1 mph = 1.61 km/h

1. Allowable wind speeds are based on the following: Components and Cladding wind loads, Mean roof height 30', Exposure B, 10 sq. ft. effective wind area. See the applicable building code for any adjustment needed for specific building location and configuration.

5.3.8 Perforated Shear Walls:

5.3.8.1 Thermo-Brace® Blue-24 Structural Sheathing is permitted to be designed in accordance with the methodology found in SDPWS Section 4.3.3.5 with the following exceptions:

5.3.8.1.1 SDPWS Equation 4.3-5 for C_o shall be replaced with the equation from Table 6.

TABLE 6. C_o FOR USE WITH SDPWS PERFORATED SHEAR WALL METHODOLOGY

<table>
<thead>
<tr>
<th>Wall Assembly</th>
<th>Replace SDPWS Eq. 4.3-5 with the Following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>$C_o = \frac{r}{(2 - r)} \cdot \sum L_i$</td>
</tr>
</tbody>
</table>

Sl: 1 in = 25.4 mm

5.3.8.2 Figure 3 shows how to calculate the capacity of a perforated shear wall with Thermo-Brace® Blue-24 Structural Sheathing using Table 6.
\(L_{\text{tot}} = 30 \text{ ft} \)
Total length of the perforated shear wall

\(h = 8 \text{ ft} \)
Height of the perforated shear wall

\(b_s = 2 \text{ ft} \)
Length of base of shear wall segment

\(L_i = 2 \text{ ft} \cdot \left(\frac{2 \cdot b_s}{h} \right) = 1 \text{ ft} \)
Length of shear wall segment with aspect ratios greater than 2:1 adjusted in accordance with SDPWS Section 4.3.4.3

\(\Sigma L_i = L_i \cdot 5 = 5 \text{ ft} \)
Summation of the five perforated shear wall segments

\(A_o = \left(2 \cdot (7 \text{ ft} \cdot 6.5 \text{ ft}) \right) + \left(2 \cdot (3 \text{ ft} \cdot 3.5 \text{ ft}) \right) = 112 \text{ ft}^2 \)
Total area of all four openings

\(r = \frac{1}{1 + \frac{A_o}{h \cdot \Sigma L_i}} = 0.263 \)
Sheathing area ratio, SDPWS Eq. 4.3-6

\(C_o = \left(\frac{r}{2-r} \right) \cdot \frac{L_{\text{tot}}}{\Sigma L_i} = 0.909 \)
Shear capacity adjustment factor (replaces SDPWS Eq. 4.3-5)

\(v = 230 \frac{\text{lb}}{\text{ft}} \)
Allowable unit shear capacity for wind

\(V_{\text{perforated}} = v \cdot \Sigma L_i \cdot C_o = 1045 \text{ lb} \)
Shear capacity of perforated shear wall, SDPWS Section 4.3.3.5

FIGURE 3. EXAMPLE OF A PERFORATED SHEAR WALL CALCULATION
5.4 Water-Resistive Barrier

5.4.1 Thermo-Brace® Blue-24 Structural Sheathing may be used as a WRB as prescribed in IBC Section 1403.27 and IRC Section R703.2, when installed on exterior walls as described in this section.

5.4.2 Thermo-Brace® Blue-24 Structural Sheathing shall be installed with board joints placed directly over exterior framing spaced a maximum of 24" (610 mm) o.c. The fasteners used to attach the board shall be installed in accordance with Section 6.

5.4.3 Where seams and joints between boards are overlapped nominally ¾" (19 mm) and fastened in accordance with Section 6, seam tape is not required for approval as a WRB.

5.4.4 Where seams and joints between boards are butt jointed, they shall be sealed with Barricade® Seam Tape or equivalent in accordance with Section 6. A slight gap of approximately 1/8" between panels is allowed.

5.4.5 A separate WRB system may also be provided. If a separate WRB system is used, taping of the sheathing joints is not required.

5.4.6 Flashing must be installed at all sheathing penetrations and shall comply with all applicable code sections.

5.5 Air Barrier

5.5.1 Thermo-Brace® Blue-24 Structural Sheathing may be used as an air barrier material as prescribed in IRC Section N1102.4.1.1, and IECC Section R402.4.1.1 and Section C402.5.18 in accordance with ASTM E2178.

5.6 Draftstop

5.6.1 Thermo-Brace® Blue-24 Structural Sheathing may be used as a draftstop material in accordance with and IBC Section 708.4.2, Section 718.3, and Section 718.4 and IRC Section R302.12.

5.6.2 When installed as of a draftstop, Thermo-Brace® Blue-24 Structural Sheathing shall be installed in accordance with Section 6.

5.7 Surface Burn Characteristics

5.7.1 Thermo-Brace® Blue-24 Structural Sheathing panels have the flame spread characteristics shown in Table 7.

<table>
<thead>
<tr>
<th>Product</th>
<th>Flame Spread</th>
<th>Smoke Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo-Brace® Blue-24</td>
<td>< 200</td>
<td>< 450</td>
</tr>
</tbody>
</table>

1. Tested in accordance with ASTM E84 and UL 723

5.8 Minimum Fastening Requirements for Non-Structural Applications

5.8.1 Where other means of wall bracing are provided, or are not required, any grade of Thermo-Brace® Structural Sheathing may be used to provide other approved wall functions when installed in accordance with this section.

5.8.1.1 The sheathing panels are applied to wall framing with 16 ga. galvanized staples having a 15/16" crown and 1¼" leg lengths.

5.8.1.2 Fastener spacing shall be a maximum of 6" o.c in the field and 3" o.c. around the perimeter.

5.8.1.3 Stud spacing shall be a maximum of 24" o.c.

5.8.1.4 Minimum fastener penetration into the framing members is 1".

5.8.1.5 Fasten all staples parallel to the framing member, with an edge spacing of ¾" (9.5 mm) minimum.

5.8.1.6 All panels are vertically or horizontally installed with all joints backed by studs, plates, or blocks when water or air barrier functionality is desired.

7 2015 IBC Section 1403.2
8 2012 IECC Section C402.4.1
5.8.1.7 When used as a WRB, joints shall overlap nominally ¾” (19.1 mm), or be butted and covered with Barricade® Seam Tape or equivalent. Overlapped joints are not required to be covered with Barricade® Seam Tape.

6 INSTALLATION

6.1 Installation shall comply with the manufacturer’s installation instructions and this TER. In the event of a conflict between the manufacturer’s installation instructions and this TER, the more restrictive shall govern.

6.2 Basic instructions are printed on every Thermo-Brace® pallet or insert.

6.3 Orientation

6.3.1 Thermo-Brace® Blue-24 Structural Sheathing shall be installed in either the vertical or horizontal orientation. To be recognized for the structural values listed in this TER, or as a water barrier, all joints must be fastened and backed by studs, plates, or blocks.

6.4 Fastener Type

6.4.1 Thermo-Brace® Blue-24 Structural Sheathing:

6.4.1.1 Minimum 15/16” crown by 1¼” leg, 16 ga galvanized staples shall be installed per the staple manufacturer’s instructions.

6.4.1.2 Fasteners shall be driven such that the crown of the fastener is in contact with the surface of the Thermo-Brace® Structural Sheathing. Do not overdrive fasteners.

6.4.2 Gypsum Wallboard:

6.4.2.1 Where required, gypsum wallboard shall be a minimum ½” thickness and shall be attached with one of the following.

6.4.2.1.1 #6 x 1¼” Type W or S screws

6.4.2.1.2 5d cooler nails

6.5 Fastener Edge Distance

6.5.1 Fasteners shall be installed with a nominal edge distance of ⅜” (9.5 mm) for Thermo-Brace® Blue-24 Structural Sheathing and gypsum.

6.6 Treatment of Joints

6.6.1 Thermo-Brace® Blue-24 Structural Sheathing joints may be either butted or overlapped.

6.6.1.1 Butted joints shall be placed over framing members and fastened with a single row of fasteners at each panel edge. A slight gap of approximately ¼” between panels is allowed. Seal butted seams with Barricade® Seam Tape or equivalent when finished with attaching the wall panels and all fasteners in the wall line.

6.6.1.2 Lapped joints shall be overlapped by nominally ¾” (19.1 mm) and fastened with a single row of fasteners. Always run staples parallel with framing. Overlapped joints do not require Barricade® Seam Tape.

6.6.2 Thermo-Brace® Blue-24 Structural Sheathing must be installed with appropriate flashing and counter flashing, in conformance with accepted building standards and in compliance with local building codes and the flashing manufacturer’s installation instructions.

7 TEST ENGINEERING SUBSTANTIATING DATA

7.1 Lateral load testing in accordance with ASTM E564 conducted by an ISO/IEC 17025 accredited testing laboratory under contract with Qualtim, Inc.

7.2 Transverse load testing in accordance with ASTM E330 conducted by an ISO/IEC 17025 accredited testing laboratory under contract with Qualtim, Inc.

7.3 Test reports and data for determining use as a water-resistive barrier material in accordance with ASTM E331 conducted by Intertek
7.4 Test reports and data for determining use as an air barrier in accordance with ASTM E2178 conducted by Intertek
7.5 Flame spread and smoke developed ratings in accordance with ASTM E84 conducted by Intertek
7.6 Some information contained herein is the result of testing and/or data analysis by other sources which conform to IBC Section 1703 and relevant professional engineering law. DrJ relies on accurate data from these sources to perform engineering analysis. DrJ has reviewed and found the data provided by other professional sources to be credible.
7.7 Where appropriate, DrJ’s analysis is based on design values that have been codified into law through codes and standards (e.g., IBC, IRC, NDS®, and SDPWS). This includes review of code provisions and any related test data that aids in comparative analysis or provides support for equivalency to an intended end-use application. Where the accuracy of design values provided herein is reliant upon the published properties of commodity materials (e.g., lumber, steel, and concrete), DrJ relies upon the grade mark, stamp, and/or design values provided by raw material suppliers to be accurate and conforming to the mechanical properties defined in the relevant material standard.

8 FINDINGS

8.1 When used and installed in accordance with this TER and the manufacturer’s installation instructions, the product(s) listed in Section 1.1 are approved for the following:
8.1.1 Lateral load resistance due to wind loads carried by shear walls
8.1.2 Use as equivalent to the CS-PF as described in IRC Section R602.10.5 and Section R602.10.6.4
8.1.3 Transverse load resistance due to components and cladding pressures on building surfaces
8.1.4 Performance for use as a WRB in accordance with IBC Section 1403.2 and IRC Section R703.2
8.1.5 Performance for use as an air barrier material in accordance with IRC Section N1102.4.1.1, and IECC Section R402.4.1.1 and Section C402.5.1.1
8.1.6 Performance for use as a draftstop in accordance with IBC Section 708.4.2, Section 718.3, and Section 718.4 and IRC Section R302.12
8.1.7 Surface burn characteristics in accordance IBC Section 2603.3

8.2 IBC Section 104.11 (IRC Section R104.11 and IFC Section 104.9 are similar) states:

104.11 Alternative materials, design and methods of construction and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design or method of construction shall be approved where the building official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code...Where the alternative material, design or method of construction is not approved, the building official shall respond in writing, stating the reasons the alternative was not approved.

8.3 This product has been evaluated in the context of the codes listed in Section 2 and is compliant with all known state and local building codes. Where there are known variations in state or local codes applicable to this TER, they are listed here.
8.3.1 No known variations

9 CONDITIONS OF USE

9.1 Thermo-Brace® Blue-24 Structural Sheathing shall not be used as a nailing base for claddings, trim, windows, or doors. Fastening through the Thermo-Brace® Blue-24 Structural Sheathing into the framing is acceptable.
9.2 Walls sheathed with Thermo-Brace® Blue-24 Structural Sheathing shall not be used to resist horizontal loads from concrete and masonry walls.

9.3 When Thermo-Brace® Blue-24 Structural Sheathing is installed as a wall sheathing but is not installed per structural requirements, light-framed walls shall be braced by other means. When used as a WRB, installation shall be in accordance with Section 5.4.

9.3.1 When Thermo-Brace® Structural Sheathing is not installed as a WRB, other means of providing a WRB shall be required, as per the code.

9.4 When used in accordance with the IBC in high wind areas, special inspections shall comply with IBC Section 1705.11.11

9.5 Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed.

9.5.1 Allowable shear loads shall not exceed values in Table 3 for wind loads.

9.5.2 Transverse design loads and wind speeds shall not exceed those described in Table 4 and Table 5 respectively, unless an approved exterior wall covering capable of separately resisting loads perpendicular to the face of the walls is installed over the sheathing.

9.6 Where required by the building official, also known as the authority having jurisdiction (AHJ) in which the project is to be constructed, this TER and the installation instructions shall be submitted at the time of permit application.

9.7 Any generally accepted engineering calculations needed to show compliance with this TER shall be submitted to the AHJ for review and approval.

9.8 Design loads shall be determined in accordance with the building code adopted by the jurisdiction in which the project is to be constructed and/or by the Building Designer (e.g., owner or registered design professional).

9.9 At a minimum, this product shall be installed per Section 5.3.3 of this TER.

9.10 This product is manufactured under a third-party quality control program in accordance with IBC Section 104.4 and 110.4 and IRC Section R104.4 and R109.2.

9.11 The actual design, suitability, and use of this TER, for any particular building, is the responsibility of the owner or the owner's authorized agent. Therefore, the TER shall be reviewed for code compliance by the building official for acceptance.

9.12 The use of this TER is dependent on the manufacturer's in-plant QC, the ISO/IEC 17020 third-party quality assurance program and procedures, proper installation per the manufacturer's instructions, the building official’s inspection, and any other code requirements that may apply to demonstrate and verify compliance with the applicable building code.

10 IDENTIFICATION

10.1 The product(s) listed in Section 1.1 are identified by a label on the board or packaging material bearing the manufacturer's name, product name, TER number, and other information to confirm code compliance.

10.2 Additional technical information can be found at barricadebp.com.

11 REVIEW SCHEDULE

11.1 This TER is subject to periodic review and revision. For the most recent version of this TER, visit drjcertification.org.

11.2 For information on the current status of this TER, contact DrJ Certification.